

RXS Scripting Language Page 1
 november 25, 2021

www.rxs.se

0. Scope of RXS ... 4
0a. RXS is a programming language: Programming the nodes 4
0b. RXS is a pipeline-language, using named pipes to connect
nodes .. 5
0c. RXS pipes may connect nodes to any data store .. 7
0d. RXS programs may contain any number of nodes and in any
topology .. 7
0e. Binary-tree-searching in pipes is supported by RXS 7
0f. RXS nodes has a number of pre-screening services when
reading pipes .. 7
0g. Adressing other subsystem on the mainframe: The address
concept ... 8
0h. Final disposal of output: the outfunc concept .. 8
0i. Unattended (batch) execution of RXS. Macro execution of RXS 8
0j. Building user-dialogues in RXS ... 8
0k. Code generation using RXS ... 9
0l. Programming in RXS .. 9

1. Action blocks and dead text .. 10
2. Syntax inside action blocks ... 12

2a. Iterations .. 12
2b. Evaluations ... 12
2c. Operators .. 12
2d. Variables ... 13
2e. Active statements in RXS .. 13
2f. Active statements: Assignments. Functions. ... 13
2g. Active statements: External calls .. 13
2h. Active statements: Instructions .. 13
2i. Active statement: Nested action blocks .. 14
2j. Active statements: Strings ... 14
2k. Statements are separate lines: one statement per line 14
2l. Comments .. 14
2m. RXS compared to REXX .. 14
2n. "Program memory exhausted" ... 15

3.Write, execute and debug RXS programs .. 15
3a. Debugging ... 16
3b. To halt a RXS program .. 16
3c. Upper case. Lower case. ... 16
3d. COBOL line-numbers in RXS programs ... 16
3e. Line numbers in columns 73 thru 80 .. 16
3f. Continuation of lines ... 16
3g. Indenting action blocks and text blocks .. 17
3h. Comments,)nop ... 17
3i. Parameters for RXS programs .. 17

4. Output from RXS ... 17
5. General orders for action blocks ... 18

5a. General orders can be any coding .. 19
6. outfile='xx' Where to write output ... 19
7. out='xx' Where to write output .. 19

7.1 Member statistics is always updated when writing a member 20
8. outfunc='xx' What to do with output ... 20

RXS Scripting Language Page 2
 november 25, 2021

www.rxs.se

9. in='xx' Input for action blocks .. 21
9.1 Reading a member .. 23
9.2 Reading a member list .. 23
9.3 Reading a generic list of mainframe files .. 23
9.4 Reading a UNIX directory .. 23

10. infile='xx' Input for action blocks ... 23
11. Internal queues as input and output ... 24
12.)trigger and)notrigger; Reacting on empty input .. 25
13. cont: Flagging last record of input .. 26
14. queuevar: Joining data from two queues ... 27
15. getqueue: Keyed data from queues .. 27
16. dropqueue: Dropping a queue .. 28
17.)text block ... 28
18. Mixing)text and)action blocks ... 28
19. func: Special interpretation of input ... 30
20. Func='sql' Accessing DB2 .. 30

20a. General order insql ... 30
20a. Host variables ... 31
20b. Output from a SQL select call ... 31
20c. Choosing DB2 system .. 32
20d. SQL update, delete, insert .. 32
20e. Calling a DB2 stored procedure .. 33
20f. SQL limitations ... 34
20g. SQL isolation level ... 34
20h. Comments in SQL ... 34

21. Func='prompt' Opening windows ... 35
21a. The dialogue generated by prompt .. 37
21b. Tailoring the dialogue using programming ... 37
21c. Tailoring the dialogue using general orders .. 38
21d. A more advanced example ... 39

23. Func='dcl'. DB2 table information .. 43
24. Func='namespace'. Using the internal RXS format: namespace 43
25. Func='xml' Accessing XML .. 45
26. Func='sorted' Func='sorted_desc' Sorting input ... 49

26a. Sorted_desc .. 50
27. Func='mqbrowse' and other access to MQSeries ... 50

27a. Reading messages from MQSeries: Func='mqbrowse' 50
27b. Destructive reading of MQSeries: Func='mqdrain' 51
27c. Destructive reading of one message: Func='mqdrainkey' 51
27d. Writing messages to MQSeries: Outfunc='mqput' 51

29. Accessing files on UNIX mainframe .. 52
29a Reading from UNIX .. 52
29b. Writing to UNIX .. 53

30. Character transformation between utf-8, ascii and ebcdic 53
31. imbed='xx' and other ways of calling external ... 54
32. Output: Specific rules .. 55

32a. The stdout dataset .. 55
32b. General order outfile: changing the name of the stdout
dataset .. 56
32c. General order out: state the output dataset or output queue 56
32d. Writing members .. 56
32e. Outfunc in a situation with several action blocks or text
blocks .. 57

RXS Scripting Language Page 3
 november 25, 2021

www.rxs.se

32f. Setting global values for stdout ... 57
32g. Commit, rollback: when is writing done? ... 57

33. Address: Special interpretation of output ... 57
33a. Changing address .. 57
33b. Addressing ISPEXEC .. 58
33c. Addressing UNIX ... 58
33d. Addressing Java via UNIX .. 58
33e. Addressing TSO ... 59
33f. Communicating to a remote system by FTP .. 59

34. Scope of variables ... 60
34a. 'Signal on novalue' .. 61

35. Execution RXS as TSO commands and from REXX ... 62
36. Execution in background (JCL) .. 63
37. Writing ISPF edit macros... 66
38. Reserved names .. 68
39.)interface .. 68
40. Functions and instructions in RXS ... 69

RXS Scripting Language Page 4
 november 25, 2021

www.rxs.se

0. Scope of RXS

0a. RXS is a programming language: Programming the nodes
RXS has inherited its basic syntax from REXX. (REXX is a scripting language from IBM). That
is, the structure of the 'if'-statements, the 'do'-loops etc. in RXS is specified in REXX syntax.
Nothing special about that - and the peculiarities in the REXX syntax are also inherited in RXS:

• REXX uses '&' instead of 'and' and '|' instead of 'or'. So a typical statement in REXX
could be "if A=14 & C=15 then do "

• REXX uses 'say' instead of 'write'
So an REXX program could be

if a = 14 & b = 15 then do
 say 'all is well'
end
else do
 say 'not ok'
end

REXX is a language with a strong function package, and this is also inherited by RXS.
RXS uses a subset of REXX: selections, iterations and sequences. Input and output is pro-
grammed at a meta-level, and internal procedure calls are not used. So: RXS is a simple pro-
gramming language with a strong function package.
To program in RXS, you put some coding inside delimiters)action and)endaction. This
means that RXS-programs can be situated inside coding in other languages, that is: inside text-
files. RXS programs are executable regardless of where they are situated. Every textfile is a
RXS program: RXS will execute the text, that is copying all of its line to output and reacting
specially only on any)action)endaction blocks in the text.
A RXS program could be

)action
 a=13
 b=15
 if a = 14 & b = 15 then do
 'all is well'
 end
 else do
 'not ok'
 end
)endaction

The example introduces a key feature of RXS: Any line in the coding describing a string (a
quoted line, normally), or any line which evaluates to a string after execution, is a description of
output: that is: a description of the lines to be collected in a file (REXX has the same feature,
but in REXX output in this sense is never written to a file). This has some importance: The goal
of any coding in any programming language is to produce output, by reacting on input. RXS has
a stronger focus on this than other programming language because output in RXS is default.
This means that when reading a RXS program you will see the output to be produced only
slightly dimmed by the footprint of the coding:

)action
 if a = 14 then do
 "Alas my love, you do me wrong,"
 "To cast me off, discourteously."
 end
 else do
 "One bottle of beer on the wall."

RXS Scripting Language Page 5
 november 25, 2021

www.rxs.se

 "Take it down and pass it around."
 end
)endaction

This is essential when using RXS for generation of code. Code generation means that you have
to see the logic of the generated code while building the logic to generate the code. Otherwise
stated: You have to see a clear view of the output while looking at the coding to produce the
output.
Below is a non-trivial example of RXS programming: Calculate the mathematical constant PI
(3.1415....) with 70 decimals:

)action
numeric digits 70
pi = 0
s = 16
r = 4
v = 5
vs = v * v
g = 239
gs = g * g
do n = 1 by 2

pi = pi + s / (n * v) - r / (n * g)
if pi = old then leave
s = -s
r = -r
v = v * vs
g = g * gs
old = pi

end
pi

)endaction
The example shows that RXS can be used for testing algorithms. Just like REXX - the differ-
ences between RXS and REXX here are small: The RXS program can be written and executed
everywhere in the ISPF environment on the mainframe, and specifying output is simpler than in
REXX.

0b. RXS is a pipeline-language, using named pipes to connect nodes
The pipeline is a fundamental concept in UNIX. Example:
ls | grep key | more
is an example of an UNIX pipeline. 'ls' creates a list of the files on the current directory, 'greb
key' filters strings containing the string 'key' and 'more' presents the resulting file on the screen.
The smart thing about pipelines is that the output of the first command is input to the second
command and so on. You specify 'the nodes' that is the workstations transforming input to out-
put, and just connect them with the pipe symbol, which is the '|'.
This enables the programmer to specify a complex flow using very little writing. But of course
this pipeline-syntax has its limitations:

1. What if one node creates two or several output-pipes?
2. What if one node uses more than one input-pipe?
3. What if you need to put some custom coding inside a node?
4. What if you need a more complex topology of the piping than the straight linear flow

down the connected pipes?
Different approaches have been tried on these questions, trading between the simplicity of the
original pipeline concept and the more complex syntax of a more flexible solution. The result of
these efforts has been that the original pipeline concept is alive and well, and the more complex
pipeline-topologies (like 'Hartmann pipes') are not much used: Simplicity is important.

RXS Scripting Language Page 6
 november 25, 2021

www.rxs.se

RXS opens this discussion again, assuming that a pipeline language which addresses all the four
bullets above might qualify as a general programming language: RXS is not trying to stand up
as a better pipeline language than the original UNIX pipes, but trying to use the pipeline concept
as the defining concept for a general programming language. To accomplish this, RXS opens
for a topology with nodes inside nodes, and introduces 'named' pipes for connecting of the
nodes.

)action address='unix'
)& out='filelist'
 'ls'
)endaction
)action in='filelist'
 if pos('key', unit.1) > 0 then do
)action outfile='withkey'
 unit.1
)endaction
 end
 else do
)action outfile='nokey'
 unit.1
)endaction
 end
)endaction

This RXS program lists the current UNIX directory and splits the list in two: File-names con-
taining the string 'key' and the rest. The two created files are presented on the screen using ispf
edit.
The)action)endaction blocks defines the nodes. The nodes are connected with named
pipes, using the variable out for naming the output pipe and in for naming the input pipe, and
thereby enabling any topology of a network of pipes and nodes.
The nodes contain coding. This coding might be addressed to any sub-system on the mainframe,
for instance UNIX: the starting point of the pipes in both examples is the UNIX 'ls' command.
If the node has an input pipe, then the coding in the node is executed once for every 'unit' deliv-
ered from the input pipe. If the node has no input pipe, the node is executed once.
The above discussion might indicate that RXS has a tight connection to UNIX on mainframe. It
has not. For RXS, UNIX is just a data source among other.

A minimalistic RXS program or 'RXS node' is a node containing one line

)action in='r2d2.c.txt(hovsa)'
 unit.1
)endaction

It may not seem obvious that this one word is a complete program written in a procedural lan-
guage. But so it is:

o The coding in the node is triggered every time the RXS interpreter delivers one
unit from the input pipe. This delivery could be the next record or a line in a
file, depending on the kind of input pointed to in the)action-line.

o The unit of input is normally named unit.1, so unit.1 is a symbol contain-
ing the record just read. The RXS interpreter will substitute any symbols in the
program with their current content during execution.

o So unit.1 is a line in the coding that evaluates to a string when executed. De-
fault handling of strings in RXS is to write then to current output.

In all: The program will copy all lines from the input-file to the output-file. Since the output-file
is not indicated, the file rxs.data will be created containing the output.

RXS Scripting Language Page 7
 november 25, 2021

www.rxs.se

0c. RXS pipes may connect nodes to any data store
RXS programs executes under TSO/ISPF on the mainframe. RXS programs are able to read all
the data stores the mainframe is able to address - a pipeline in RXS can be any file or any other
data structure.

)action in='O:\AcmeCorp\HR\Employee of the Month\October'
)& || ' 2013\Nominees.doc'
)& pc='r2d2'
 unit.1
)endaction

This RXS program reads the indicated local network file and lists it on the mainframe. The indi-
cated PC (indicated by its symbolic name or IP-address) is used for transportation.
A RXS program may accordingly write files to the local network.
DB2 and MQSeries are other kinds of data stores which RXS is able to read (and write).

0d. RXS programs may contain any number of nodes and in any topology
An action block may contain another action block: An action block is syntactically like any
other chunk of coding in the RXS program. That is, it may be conditioned by an if-statement
etc. The example in section 0b above demonstrates this. This means that any topology (any web
of nodes connected by pipes) may be created in a RXS program: a hierarchy, a sequence and
any combination of the two. Output from one action-block may serve as input for one or several
action blocks down the chain. (...Or down the drain: There is a similarity between pipe-line
programming and plumbing work). This makes RXS a complete language: The topology of the
problem to be programmed can always be matched by a topology of action-blocks, thereby solv-
ing the problem.
A RXS program may consist of a sequence of action-blocks not contained in some master ac-
tion-block. This is syntactically ok, and the action-blocks are executed in sequence, consuming
their pipes and creating their output-pipes, and when done, the next action block down the chain
or drain will be activated. Any text between the action blocks: that is, text not contained in ac-
tion-blocks - will by copied unaltered to output.

0e. Binary-tree-searching in pipes is supported by RXS
A common way to use two input pipes to create one output pipe is to use binary search, making
one of the input pipes accessible by key. This important feature for making complex topologies
is supported by RXS. (Instructions queuevar and getqueue).

0f. RXS nodes has a number of pre-screening services when reading pipes
Pre-screening input using 'func' is used when the program needs to 'see' input in some special
way. Example: input must be sorted, or input must be transformed from one encoding to anoth-
er. Or input is to be seen as XML, or to be seen as SQL. This is specified in RXS using a 'func'
modifying or interpreting input. So transformations of input using rules applied to each input-
unit (unit.1) are programmed in the coding inside the)action block, while transformations
which sees the input as a whole are not programmed, but specified as a parameter ('func') at the
)action-level.
Example: func='sorted' will sort the units of input in ascending order. Sorting descending,
and sorting on some restricted sort-field is also possible.

)action in='ourgroup.thisdata'
)& func='sorted'
 /* some coding here */
)endaction

Example: func='mqbrowse' is assuming that in is naming an MQSeries-queue on the main-
frame, and will undertake a non-destructive reading of messages in this MQ-queue.

RXS Scripting Language Page 8
 november 25, 2021

www.rxs.se

Example: func='sql' will see input as some SQL, and will undertake the specified reading
(or update or anything) on DB2 to create input to the action block. RXS has a tight connection
to SQL, compared with other languages - accordingly it is relatively easy to mix SQL coding
and RXS coding.

0g. Adressing other subsystem on the mainframe: The address concept
If output from an action-block in RXS is to be seen as anything other than plain textual output,
the action-block may 'address' output to some subsystem on the mainframe, thus putting some
special interpretation upon the output. Example: Specifying address='unix' will assume
that output from this action-block is UNIX-commands, and accordingly try to execute them
against the UNIX-system on the mainframe.

0h. Final disposal of output: the outfunc concept
If output from an action-block is to be seen as plain text (that is, if 'address' is not used), then
the standard addressing in RXS handles it: Default in RXS is handling of output by addressing
to 'stdout'. 'Stdout' has some default features, which may be modified using 'outfunc'. Example:
outfunc='browse' changes the normal behaviour of 'stdout' from 'edit' to 'browse' on the
created output.
If an environment addressed by RXS - for instance unix - produces sequential output (say error
messages or confirmations) this is also handled by stdout, just like any other output from an
action block. So: stdout is the final handler of all sequential output from RXS.

0i. Unattended (batch) execution of RXS. Macro execution of RXS
Normally RXS program are executed in foreground on the mainframe: You are in an edit ses-
sion on the mainframe having created a RXS program. You write RXS in the command-line and
presses enter. The RXS program starts executing, and the user interfaced is blocked. When exe-
cution is finished, the edit session switches to a view of the output from the RXS program.
When pressing 'end' (F3 in ISPF) all output files are viewed in a sequence. In case of errors,
instead the line in the program in error will be high-lighted with an error message and all chang-
es and all output made op to the error point will be rolled back.
This normal picture may be altered:

• A RXS program may be catalogued in a file allocated to RXSLIB on the ISPF-session,
thereby enabling RXS programs to be executed like REXX-programs and TSO com-
mands.

• A RXS program may be executed unattended in background. That is: activated from
JCL

• A RXS program may function as a 'macro' by using the current file in the edit session as
a input source or a pipeline.

0j. Building user-dialogues in RXS
The pipeline concept of RXS includes the user (you) sitting in front of the 3270 screen on the
workstation: The RXS program may set up a pipe requesting input from the user at any point in
the program, by specifying func='prompt'. The user will then be prompted from a ISPF-
panel which is generated by the RXS interpreter. Also a dialogue is generated: The user can go
forward and backwards between these panels for correction of errors on previously displayed
panels. So the coding in the RXS program just specifies some pipelines requesting user-input.
The RXS interpreter generates panels and dialogues.

RXS Scripting Language Page 9
 november 25, 2021

www.rxs.se

0k. Code generation using RXS
Code generation is a key feature of RXS, and code generation was the starting point and the key
motivation for development of the RXS language. Code generation is nothing more than the
ability to generate a text-file by combining the different chunks of text (chunks of 'coding') to be
generated, conditionally governed by a set of rules; the chunks of text containing variables to be
substituted. Code-generation is like any normal programming work: changing input to output,
but the job is easier when using a language focused on straight specification of 'chunks of text'
and having easy interfaces to all kind of input. As mentioned before: a language with a small
footprint, making output clearly visible, is essential in code generation. Easy code generation is
often essential: Being able to generate code can solve a lot of grave problems on a development
project.

0l. Programming in RXS
The focus on pipelines in the RXS language encourages a programming style where logic is
specified in pipelines more than in programmed logic. Example: you want to list all records in a
mainframe file named this.file which contains any of the words 'sunshine' 'bicycle' or 'ap-
ple' as the first word of the record.
It can be programmed:

)action in='this.file'
 if word.1 = 'sunshine' | word.1 = 'bicycle' ,
 | word.1 = 'apple' then do
 unit.1
 end
)endaction

Or it can be programmed:
)action out='fine_words'

'sunshine'
'bicycle'
'apple'

)endaction
)action in='this.file'

if queuevar('fine_words', word.1) = 1 then do
unit.1

end
)endaction

The last version sees the problem as a match between two pipelines, which might be a clearer
image of the problem. Thereby making the modification easier if the collection of 'fine words' is
changed.
Another example: You want to concatenate some files in a new file called salesall.data,
and therefore writes this program:

)action out='file_list'
'sales.south'
'sales.northwst'
'sales.northeas'
'sales.east'
'sales.central'

)endaction
)action in='file_list'

actual_file = unit.1
)action in=actual_file
)& outfile='salesall'

 unit.1
)endaction
)endaction

In RXS you might solve a problem by naming a list of the objects that the program is to act
upon. While in a normal programming language like JAVA or COBOL you specify (and name)

RXS Scripting Language Page 10
 november 25, 2021

www.rxs.se

a procedure able to do the action and then program a sequence of calls to this procedure, speci-
fying the actual object to be acted upon in each of the calls.
RXS programs may use 'property-files' massively, like in the two examples above. Having the
property-files inline in the coding paves for easy reading and changing of both the coding and
the property-files.
RXS is the programming language a squirrel would like to use: When you stumble over some
interesting information, you put it in a queue somewhere in your territory for later use, naming
the queue to help finding the information later.
Being a scripting language, RXS is focused on quick and readable specification of a problem.
RXS is not intended for programming the production system - but might be used for 'program-
ming the programming' of parts of the production system, that is: code generation. Besides that,
RXS is intended for the daily utilities needed to create and maintain and supplement the produc-
tion system. RXS is more complicated than the original pipeline concept, but still with this sim-
plistic idea as its basic, and RXS is radically simpler than production languages like JAVA or
COBOL. This paves for an attitude of ‘spend 5 minutes to program a utility’ instead of manual-
ly solving 3 related problems separately. The threshold for when to program a utility is low
when using RXS.
RXS is a mainframe language. This is true in a more subtle sense than just the choice of plat-
form - RXS is a language for large projects with an internal handling of information in the de-
velopment process. The idea of having a special language to assist the process of creating a
system in another language - well, we are clearly in the realm of large systems.

1. Action blocks and dead text
A RXS program consists of one or more 'action blocks' containing coding in REXX syntax.
The action blocks are connected to each other and to the surrounding world through queues and
files, thus implementing a 'pipes-and-nodes' pattern, the nodes being the action blocks contain-
ing the coding. Between the action block may reside 'dead' text: lines of text that are copied to
final output file without any interpretation or altering. Using such 'dead' text is often essential in
code generation: the job is to generate a complete program, but often parts of the program is not
suited for code generation, but better written as is.
'The surrounding world' for RXS is all the common file formats and data store used on the
mainframe: DB2, MQSeries, XML, COBOL-source, sequential and partitioned files, and files
on the mainframe UNIX-file system. Even the person sitting in front of the screen is - as seen
from RXS - a source of data which could be tapped using a pipeline (section 21).
An action block is a part of the RXS program delimited by the two lines
)action
and
)endaction
In the wrapper for the coding, following the word)action, may be some assignments ('gen-
eral orders'), also in REXX syntax, describing the connection between the surrounding world
and the coding: Which pipes leads to and from the coding, and how are these pipes consumed
by the action block. Action block may be without general orders, in which case they are execut-
ed just once, consuming no external input. Otherwise an action block is triggered once per ele-
ment (record or row or...) input to the action block.

Here is a trivial example: a RXS program consisting of 'dead' text only - no action blocks:

Example 1.1:

RXS Scripting Language Page 11
 november 25, 2021

www.rxs.se

1.
What shall we do with the drunken sailor
What shall we do with the drunken sailor
What shall we do with the drunken sailor
Early in the morning

2.
Put him in the longboat till he's sober
Put him in the longboat till he's sober
Put him in the longboat till he's sober
Early in the morning

Notice that RXS coding (that is: what is to by consumed by the RXS interpeter) throughout this paper
is in a coloured courier font. Dead text is coloured olive.
We will return to this example a couple of times - in section 11, example 11.2, we will reach the defi-
nite solution of this 'drunken sailor' problem.

Writing the text in a dataset or member using ISPF edit, then writing RXS in the command field
on the screen, and pressing enter will start the RXS interpreter, trying to see the text as a pro-
gram. Because no part of the text is contained in an)action)endaction block, all lines
will be copied unaltered to output.
Now, adding a couple of action blocks:

Example 1.2:
1.
)action

do 3
"What shall we do with the drunken sailor"

end
)endaction
Early in the morning

2.
)action

do 3
"Put him in the longboat till he's sober"

end
)endaction
Early in the morning

Output from example 1.2 is identical to output from example 1.1 The program is now a mixture
of lines not contained in action blocks (dead text) (lines 1, 7, 8, 9 and 15), programmed logic
(lines 3, 5, 11 and 13), and lines inside action blocks to be written to output (lines 4 and 12).
Notice that no general orders are given in the)action lines: The above program is not to work on
anything. Accordingly the action blocks are triggered only once.
How does the RXS interpreter see that a line inside an action block is to be written to output?
RXS inherits and expands a core principle from the REXX language: Any line in the coding
which is not executable is considered aimed at 'the addressed environment' and is sent to that
environment. For RXS the 'addressed environment' is output (normally). A line in the coding
contained inside quotes is not executable, and therefore is sent to output.
Accordingly, RXS is probably the only programming language not using som kind of 'write'
command: Creating output is default.
Notice that execution of a RXS program is always top-down: Imagine some 'execution counter'
sweeping down the program, line after line. When this execution counter hits a line of 'dead'
text, the line is written to output. When the execution counter hits an action block, the whole
block is read and then interpreted.

RXS Scripting Language Page 12
 november 25, 2021

www.rxs.se

Besides the)action)endaction constructs, the following meta-structures exists in RXS:
)text)endtext (See section 17) - kind of action blocks containing only strings
)imbed (section 31) - indicating externally defined RXS coding
)trigger)notrigger (section 12) - sub structure inside action blocks: specifying reac-
tion on empty input
)interface (section 39) - opening an interface into an internal queue in rxs
)nop (section 03) - doing nothing

2. Syntax inside action blocks

2a. Iterations
do i = 2 by 2 to 12 /* execute for i = 2, 4, 6, 8 ,10 ,12 */

 some-action
end

do forever /* execute until the command 'leave' is reached */

if some-logical-evaluation-is-true then iterate /* start over */
some-action
if some-other-logical-evaluation-is-true then do
leave /* leave this do loop now */

end
end

2b. Evaluations

if some-logical-evaluation-is-true then do /* either or: */

some-action
end
else do

some-other-action
end

select /* evaluate or case structure: */

when some-logical-evaluation-is-true then do
some-action

end
when some-other-logical-evaluation-is-true then do

some-other-action
end
otherwise do /* Note: 'otherwise' clause must always be stated */

another-action
end

end
RXS normally uses the syntax above: an if-statement is a separate line ending with 'then do'.
What is to be done is ended with an 'end' in a separate line.
A short form may be used: if some-logical-evalution-is-true then some-action

2c. Operators
'some-logical-evaluation' means some expression containing an operator, that is '=', '<', '>' and
the like. Example: a < 14. The operator <> (not equal) is valid in RXS.

RXS Scripting Language Page 13
 november 25, 2021

www.rxs.se

Two or more logical evaluations may be combined into one using the logical operators '&' (and)
'|' (or) and parenthesis. Example:

if (a > 14 & b >= 13) | c <> 12 then do
In Nordic countries, France, Germany, Austria and Italy, the 'or' operator is '!'. This oddity is
enherited from REXX or more correctly, from EBCDIC.

This inconvenience applies generally to RXS: When in the Nordic countries, France, Germany, Austria or
Italy: Whenever the documentation specifies '|' then use '!'.

2d. Variables
Names for variables in RXS must start with a letter; special characters are not allowed. Maxi-
mum length of a name is 250 characters. Underscore '_' is allowed, hyphen '-' is not allowed.
Names starting with the characters rx_ are reserved for internal use and cannot be used.
Variables in RXS are allocated automatically. Variables are typeless, the variable a may contain
a number or an alphanumeric constant. But asking if a > 14 will only evaluate to true or
false if a is currently holding a numeric value. Otherwise execution is terminated in error.
 Alphanumeric constants in RXS must be contained in quotes - single or double. Maximum
length of a quoted string in an assignment is 256 characters. Internally in RXS, an alphanumeric
string can hold up to 16 MB of data (see section 2n below).
Numeric constants in RXS hold up to 15 digits. Exponential notation is possible: 1.4E+02 is
1400.
Hexadecimal constants in RXS are in the form "12AB"X
A 'stem' in RXS is an array. The form of a stem is variabelname.number. For example
mystem.14, or mystem.mynumbr, provided that mynumbr is the name of a variable con-
taining a number. (It is also accepted that mynumbr is not numeric).
The assignment mystem. = '' will initialize all possible values inside mystem.

2e. Active statements in RXS
'some-action' in the text above indicates one of the following active elements in RXS:

2f. Active statements: Assignments. Functions.
RXS uses assignments in the form: a = 14 or a = random(). Here random() is an ex-
ample of a function in RXS. RXS has a rich collection of functions, most of them dealing with
strings - see section 40.
Assignments may contain arithmetic: multiply a * b, divide a / b, square a ** 2. And a
+ b and a - b. Parenthesis may alter the normal order of evaluation.

2g. Active statements: External calls
The call of an external function in RXS is in the form: call myrexx
This assumes that myrexx is a rexx or a clist residing on a library allocated to the tso-session.
Section 31 and 33 explain other forms of external calls.

2h. Active statements: Instructions
An instruction in RXS is a command that alters the further proceedings of the program.
For example iterate (see section 2a) , leave (section 2a), address (see section 4),
exit (see section 2m below). All instructions in RXS are listed in section 39.

RXS Scripting Language Page 14
 november 25, 2021

www.rxs.se

2i. Active statement: Nested action blocks
An action block may be situated anywhere where an active statement is acceptable. This indicat-
ing that action blocks can be nested. Which doesn't make much sense for now: action blocks
are just blocks of REXX coding. The purpose of this construct will be revealed in section 18.

2j. Active statements: Strings
A string may be situated any places where an active statement is acceptable. A string is a line
surrounded by single or double quotes (plus some other situations which RXS classifies as
strings: evaluations which transforms into strings after evaluation). In the case of a string, RXS
will write the string to output. See Section 4 for further discussion.

Example 2.1:
)action

do i = 1 to 2
i"."
do 3

if i = 1 then do
"What shall we do with the drunken sailor"

end
else do

"Put him in the longboat till he's sober"
end

end
"Early in the morning"
" "

end
)endaction
Example 2.1 is a slightly more advanced programming of our current example: output will be as in
example 1.1 Notice that lines in an action block may be intended - to increase readability.
The second line in the action block: i"." transforms into a string after evaluation. The evaluation
results in a replacement of the variable i with its current value. The thereby created string will be
written to output by RXS.

2k. Statements are separate lines: one statement per line
The above elements in RXS have to be written as separate lines in the action block. It is possible
to continue a line: ending a line with ',' will concatenate the next line to this line. It is also possi-
ble to write several lines in one line, separating the parts by ';'.
Otherwise no constraints on layout exists: RXS statements in actions blocks can have any
amount of leading 'white space', and can be written in any dataset.

2l. Comments
/* starts a comment, */ ends a comment.

2m. RXS compared to REXX
The syntax described above is equivalent to REXX syntax. It is REXX: RXS uses the interpret-
ing engine supplied by REXX to interpret and execute coding inside action blocks. Accordingly,
even more advanced elements in the REXX language may be used in RXS - for instance REXX
commands for handling input and output, and REXX commands for handling stacks and queues.
But such advanced REXX elements are not often used in RXS: the handling of text-blocks and
other internal files inside the RXS program and the handling of files externally in the form of
input and output is more easily handled using the basic machinery in RXS.
Two REXX constructs are not allowed in RXS:

RXS Scripting Language Page 15
 november 25, 2021

www.rxs.se

• You may not call your own internal sub-routines ('call'). A RXS program is structured
in action blocks, not in sub-routines.

• Goto constructs are not allowed (Go to is called signal in REXX, so therefore: signal is
not allowed in RXS)

This implies that execution in a RXS program is always sequential: top down. An action block
is executed when the execution hits the block; it cannot be 'called'.
Notice that call of external routines, for instance the calling of REXX or RXS programs, is sup-
ported by RXS (See section 31 and 33).
There are two differences between detailed functionality in RXS and REXX:

• exit and return has a strong side effect in RXS compared to REXX. Using them
means that all output is rolled back (written lines are not written anyway) and any up-
dates on DB2 and MQSeries from RXS are rolled back too. After that, the program
stops. A RXS program is a transaction and implements coherent commit / rollback of
all resources of the program. Exit and return works the same in RXS, except in handling
of RXS windows as explained in section 21.

• In RXS it is strictly controlled that a variable is assigned a value before its content is
used in a logical evaluation or in a string. You cannot ask if a = 14 then...if
the variable a has not received a value at a prior point in the RXS program. If you ask
anyway, the program will terminate in error, labelling the if-statement with a message:
'a has no value'.

Finally: RXS differs from REXX by supplementing REXX with a (small) number of new func-
tions and instructions. All relevant functions and instructions in RXS are listed in Section 40.

2n. "Program memory exhausted"
REXX variables have an implementation maximum: No single request for storage can exceed
the fixed limit of 16 MB. This limit applies to the size of a variable plus any control infor-
mation. It also applies to buffers obtained to hold numeric results.
The limit is often lower than 16 MB when running in tso (in foreground). It depends on the re-
gion size at logon. The maximum may be as low as 3 MB. The relation between region size and
maximum length of a data structure in RXS is not obvious. If the limit is reached, execution
halts with the error message "Program memory exhausted".
A file read or written from RXS cannot exceed about 1 GB. All external and internal files in
RXS are kept in memory during execution of the program. Accordingly, RXS uses a lot of high
memory during execution.
Running RXS in the background might be needed if the program is very data intensive. Here
using REGION=0K in the JOB-card will maximise the amount of high memory. See section 36.

3.Write, execute and debug RXS programs
To execute a RXS program, write the program in any dataset on the mainframe using ISPF edit,
write rxs in the command line in the edit screen (==> rxs) and press the enter key. No alloca-
tion of the dataset containing the program is necessary. It is not necessary to 'save' the program
before execution: the RXS interpreter works as an ISPF-macro. The dataset may have COBOL
numbers, these are ignored in the interpretation of the program, but output will be generated
using COBOL numbers in this situation.
In case of errors, error messages from RXS will pop up over the line in error in the program.

RXS Scripting Language Page 16
 november 25, 2021

www.rxs.se

ISPF command ==> hilite rexx will syntax colour what is on the screen, and that can be
very handy, especially because quotes are used quite intensive in RXS. This syntax colouring
highlights unbalanced quotes.
RXS programs also may be executed as TSO commands. The prerequisite is that these RXS
programs are members in a dataset allocated to the TSO session as file RXSLIB (Section 35).
RXS programs may also be executed from JCL (Section 36).
RXS programs must execute inside TSO + ISPF environment.

3a. Debugging
When debugging is needed, note the following:

• The RXS command say is excellent for debugging. The command writes
strings and variables on the screen during execution.

• Error messages from RXS always contains a header: "RXS error:", "REXX error:",
"SQL error:" and so on. If some coding conflicts with REXX syntax rules, a REXX
manual might be useful. Etc.

•)interface in='q1' will halt execution temporarily and will show actual content of
internal queue 'q1' on the screen

• RXS encourages incremental programming: Write a couple of action blocks and exe-
cute. Build on when successful.

• Marking a block of lines with line commands 'cc' 'cc' will direct RXS to execute the
marked block only

3b. To halt a RXS program
If execution of a RXS program has to be stopped, press the 'Esc' button, which starts a termina-
tion dialogue. Now enter hi for 'halt immediate', or he for 'halt execution'. 'Halt execution' will
kill any sub process from the RXS program as well - 'halt immediate' will not kill activities in
SQL for instance, and not stopping such activities might block the RXS program from stopping.

3c. Upper case. Lower case.
RXS do not discriminate between upper and lower case.. NUMB and numb is the same variable
name and)action and)ACTION works the same. Strings used in general orders don't dis-
criminate either: FUNC='SQL' and FUNC='sql' will work identically. But for user varia-
bles case does matter: a='B' and a='b' are not identical assignments.

3d. COBOL line-numbers in RXS programs
RXS programs may be written in a dataset using COBOL line numbering (columns 1 thru 6
numeric). These line numbers are ignored (but influences the allocation of stdout - see Section
32)
Input datasets for RXS program having last qualifier of the name equal to 'COBOL', and having
column 1 thru 6 numeric or blank, will be read ignoring column 1 thru 6.

3e. Line numbers in columns 73 thru 80
If columns 73 thru 80 are numeric, if column 72 is not entirely numeric, and if the record length
of the file is 80, then columns 73 to 80 are ignored. This principle applies to both the RXS pro-
gram itself and to input files used in the program.

3f. Continuation of lines
Any statement may be continued on the next line by ending the first line with a comma:

RXS Scripting Language Page 17
 november 25, 2021

www.rxs.se

Example 33.1:
)action

"Alas my love, you",
"do me wrong"
"to cast me off discour",
||"teously..."

)endaction
Output is:
Alas my love, you do me wrong
to cast me off discourteously...
If || (the concatenation operator) is written in front of the continued line, the two parts of the line
are concatenated without an interleaving blank. Otherwise an interleaving blank is placed between
the two parts of the line. In some european ebcdic (Nordic...) , use !! instead of ||.

3g. Indenting action blocks and text blocks
Blanks are allowed in front of)action,)endaction and the other RXS delimiters. Reada-
bility is augmented when intending is used for marking the logical nesting of blocks.

3h. Comments,)nop
Comments surrounded by /* and */ may be written anywhere inside action blocks - also in
general orders.
Exception:
Any line starting with) is interpreted as a special RXS delimiter. Even if it is inside a com-
ment block.
Outside action blocks (in text blocks and outside blocks) lines are not interpreted. Accordingly
comments are not recognized as comments, but are written to output.
To place comments outside action blocks, use the special RXS marker)nop:
)nop "This is just a comment"
)nop lines are always ignored in the interpreting and do never qualify for output.

3i. Parameters for RXS programs
RXS programs may be executed using parameters. If in an IPSF edit session on a RXS program,
you write rxs what's up doc in the command field on the edit screen, RXS will receive
the string "what's up doc" in the RXS variable rxsparm.
The parameter is not allowed to start with characters | or ?

4. Output from RXS
'Strings' in the RXS program - that is lines in the program not being commands, assignments,
selections or iterations - are as a default handled over to an environment called 'stdout'. It is
possible to deviate from this default (Section 7).
The handling over of strings to 'stdout' implies the strings are written to the current RXS da-
taset. Depending on the situation, this dataset is automatically created as RXS.DATA or
RXS.COBOL. It is possible to deviate from this default (Section 7).
As default the RXS program terminates by bringing the current RXS dataset up in an edit ses-
sion - providing that something is written in this dataset. It is possible to deviate from this de-
fault.

Example 4.1:
)action

RXS Scripting Language Page 18
 november 25, 2021

www.rxs.se

nbr = random() /* get a random number */
'Square of' nbr 'is' nbr**2

)endaction
The third line in the program describes a string. Therefore this line will be written to the dataset <us-
er>.rxs.data -where <user> is the actual TSO userid. The RXS program terminates by bringing this dataset up
in ISPF edit.

Default environment for the receiving of strings (that is stdout) may be changed: By the general
order address=... strings may be sent to another environment or milieu. For instance
address='tso' sends all following strings in the action block to TSO. Over here, the
strings will be handled 'the tso way' that is: strings are seen as commands and are executed.
See Section 32 for a more detailed discussion of output from RXS.
See Section 33 for a more detailed discussion of the general order address.

5. General orders for action blocks
Putting the coding of RXS into action blocks offers the opportunity to specify what the coding
is to work against: what is input, how to fundamentally interpret input, where to put output, and
what to happen when the putting of output is finished. These kinds of specifications are called
'general orders'. A 'general order' is an assignment placed in the line starting with the word
)action.
Some common general orders are:
in what is input?
func how to interpret input?
outfile or out where to write output?
outfunc how to treat output when terminating the RXS program.
General orders are in REXX syntax, that is assignments in the form outfunc='edit'. If the
action block has more than one general order, the orders are written one per line, using the con-
tination marker for blocks which is)&. For instance:
)action out='mylib.mydsn(mymbr)'
)& outfunc='browse'
Alternative: separate the general orders by one ';' and write more than one general order in the
same line. For instance:
)action out='mylib.mydsn(mymbr)';outfunc='browse'
If one general order is longer than what fits on the edit-screen, it may be split over more than
one line, using the continuation marker '||' on the continuated line. For instance:
)action out='C:\ACME Cooporation\Management\Administration'
)& || '\Sales department\employees'
)& || '\employee of the month\october 2013.txt'
)& outfunc='browse'
Lines continuated using the concatenation marker '||' on the continuated line will be concate-
nated without any interleaving blank.
General orders may be any executable statement in REXX syntax. Coding placed as general
orders will execute when the action block 'starts up', that is, when the execution of the RXS
program hits the top of the action block.
Again: imagine some 'execution counter' sweeping down the program, line after line. When this
execution counter hits an action block, the general orders in the)action line is interpreted first
and once, the rest of the action block is then read in and is interpreted repeatedly for each ele-

RXS Scripting Language Page 19
 november 25, 2021

www.rxs.se

ment in input for the action block. If the action block doesn't use input, the action block is inter-
preted once.
General orders are - when introduced first time - in the following sections written in typeset
courier bold.

5a. General orders can be any coding
Anything may be programmed as general orders in the)action line. You may write
if a=4 then out='q1' else out='q2'
or
say 'ok - so far, no problems'
or whatever.
Exception: RXS block constructs cannot be used as general orders: you cannot inside a general
order use)action and)imbed etc.

6. outfile='xx' Where to write output
outfile
General order outfile governs naming of the stdout dataset. As default, the middle qualifier
in the name of this dataset is 'RXS'. Assigning a value to outfile as a general order will
change this qualifier.

Example 6.1:
)action outfile='yrsa'

nbr = random()
'Square of' nbr 'is' nbr**2

)endaction
Writing will be done on the dataset '<user>.yrsa.data' where <user> is actual TSO user ident.

Default stdout dataset is automatically allocated by RXS. This applies as well if outfile has
changed its name.
outfile is at maximum eight characters, and have to obey to IBM syntax for names, that is
first character non numeric, and using no special characters.

7. out='xx' Where to write output
out
RXS may be conducted to write on any dataset.
As default - if out is not assigned a value - output is written to default stdout dataset according
to section 5.
If general order out is assigned the name of an existing dataset, RXS will write to this dataset.
Dataset names must be fully qualified and stated in single or double quotes. (They must be in
quotes because RXS considers any non-quoted string as the name of a variable).

Example 7.1:
)action out='myuser.myout(hugo)'

nbr = random()
'Square of' nbr 'is' nbr**2

)endaction
Writing is done in member 'hugo' in dataset 'myuser.myout'

RXS Scripting Language Page 20
 november 25, 2021

www.rxs.se

The dataset stated as out has to exist before the execution of the RXS program hits the action
block. A member name stated as part of out may or may not exist. Writing will delete any prior
content in the dataset or the member.
out may also denote an internal queue. This core feature of RXS is discussed in section 11.
The file concept in RXS is generalized. The table below lists the different file-types which RXS
is able to write:

If out con-
tains...

...and the file is... then this
happens...

example....
out contains:

sec-
tion:

...at least one '.' a mainframe file (FB, VB, U,
spanned). (VSAM files are not
supported in RXS)

the file is
written

'myuser.myoutput'

...at least one '.' a MQSeries queue the queue is
written

'our.reply.queue' 27

...at least one '.' and
one '(' and one ')'

a member in a partitioned main-
frame file (FB, VB, U, Spanned)

the member
is written

'r2d2.c.text(yrsa)'

...at least one '/' A UNIX (HFS) file on mainframe the file is
written

'/home/r2d2/xx.txt' 29

...none of these an internal queue in RXS the queue is
written

'very_bad_movies' 11

7.1 Member statistics is always updated when writing a member
zlcdate Current date. Formatted in the 'national' date format by ISPF
zlmdate Current date in 'national' date format
zlmtime Current time, hour and minute. tt:mm
zlmsec Current time, seconds, ss
zluser The constant 'RXS'
zlcnorc The number of records written in the member. The maximum value is 65535,

but actual number of written records have no limit.

8. outfunc='xx' What to do with output
outfunc
The stdout environment has a default way of handling the output dataset from RXS: The dataset
will be shown in an edit screen - presuming that the RXS program has written something into
the dataset. If the dataset is empty, nothing will happen.
If general order outfunc is assigned a value, this default for 'termination action' in the stdout
environment is overruled. Following options exists:

• outfunc='edit' ISPF edit on output dataset (default)
• outfunc='browse' ISPF browse on output dataset
• outfunc='view' ISPF view on output dataset
• outfunc='sub' TSO submit of output dataset
• outfunc='mqput' Output is sent as MQSeries messages

RXS Scripting Language Page 21
 november 25, 2021

www.rxs.se

• outfunc='nop' No action
• outfunc=anything Anything.

Outfunc='sub' prerequisites - for good results - that the RXS program has created JCL
statements in the output dataset.
Outfunc='mqput' prerequisites that out is assigned the name of a MQSeries message
queue residing on the queue manager which is defined as current for RXS. More information in
Section 27.
Outfunc='nop' means that the RXS program just terminates after writing the dataset.
Outfunc=anything. Any TSO-command, CLIST / REXX may be used as outfunc. Such a
command may use parameters. The command does not have to have any relationship to the out-
put dataset. Example: outfunc='t' means that the actual time is written on the screen on
the termination of the RXS program (t is a tso-command giving actual time). Observing the
rules in Section 27, even a RXS program may be used as outfunc.

Example 8.1:
)action out='myuser.myout'
)& outfunc='browse'

nbr = random()
'Square of' nbr 'is' nbr**2

)endaction
In this example both out and outfunc are general orders to the action block. Therefore they are
written on separate lines, using the continuation marker for general orders: ')&' Alternatively bot or-
der may be written in the same line separated by ;. The execution of the RXS program results in the
string ‘Square of 25 is 625' (presuming the random number happens to be 25) being written to the da-
taset 'myuser.myout' and this dataset is finally presented on screen using ISPF browse.

9. in='xx' Input for action blocks
in
An action block may read an input dataset. General order in is to be assigned the name of such
a dataset.
In very general, the action scheme in RXS is the following: Each record or unit (message, row,
element...) in input will trigger the action block once. As default, input is seen as a collection of
records. That is, if an input dataset contains four records, the action block will be executed four
times.
As default, data from actual input record can be accessed inside the action block by the follow-
ing variables:

unit.1 The variable (which is a stem with one element) unit.1 is assigned the
value of the actual input record

word.x The 'words' of the actual input record is put into variables (stem) word.1,
word.2, word.3,... depending on the number of words in the actual
record. By 'word' is meant a string of non-blank characters. Say actual rec-
ords contain three words, then word.4, word.5 etc. will be assigned
with strings of length zero.

(A 'stem' in RXS is - as mentioned in section 2 - an array or a one-dimensional table).
Example 9.1:
)action in='myuser.myinput'
)& out='myuser.myout'

'Square of' word.1 'is' word.1**2
)endaction

RXS Scripting Language Page 22
 november 25, 2021

www.rxs.se

If the first 'word' of each record in the dataset 'myuser.myinput' is numeric, RXS creates a stream of
linies in output clarifying how these input numerics are squared. If any record exists in input having a
non numeric first 'word', RXS terminates with an error message and nothing is written.

Reading datasets is the default form of input to action blocks. In section 19 is discussed how to
access other kinds of input like DB2, MQSeries etc.
in may also denote an internal queue. This core feature of RXS is discussed in section 11.

readlim
If only a part of the file is to be read, then specify readlim

Example 9.2:
)action in='myuser.myinput'
)& readlim=10

'Square of' word.1 'is' word.1**2
)endaction
This works like example 8.1, but only the first 10 records of 'myuser.myinput' is read. Output is writ-
ten to stdout (see section 4)

readfrst
To skip reading of the start of the, then specify readfrst.

Example 9.3:
)action in='myuser.myinput'
)& readfrst=11

'Square of' word.1 'is' word.1**2
)endaction
This works like example 8.1, but the first 10 records of 'myuser.myinput' is skipped. Reading starts
on record number 11.

The file concept in RXS is generalized. The table below lists the different file-types which RXS
is able to read:

If in contains... ...and the file is... then this

happens...
example...
in contains:

sec-
tion:

...at least one '.' a mainframe file (FB, VB, U,
spanned). (VSAM files are not
supported in RXS)

the file is
read

'myuser.myinput'

anything compati-
ble to MQ naming
standards

a MQSeries queue the queue is
read

'our.xx_queue_' 27

...at least one '.' a partitioned mainframe file (FB,
VB, spanned).

a member
list is creat-
ed

'myuser.cntl' 9.1

...at least one '.' and
one '(' and one ')'

a member in a partitioned main-
frame file (FB, VB, U, Spanned)

the member
is read

'r2d2.c.text(yrsa)'

... one or several '*' a search argument for creating a
list of mainframe files

a list of files
is created

'r2d2.c*.*' 9.2

...at least one '/' A UNIX (HFS) file on mainframe the file is
read

'/home/r2d2/xx.txt' 29

...at least one '/' A UNIX (HFS) directory on main-
frame

a list of files
is created

'/home/r2d2/' 29

...none of these an internal queue in RXS the queue is
read

'very_bad_movies' 11

RXS Scripting Language Page 23
 november 25, 2021

www.rxs.se

9.1 Reading a member
If in names a partitioned mainframe file and a member name - example in='r2d2.c.text(yrsa)'
– then the member is read, and variables zlcdate, zlmdate, zlmtime, zlmsec, zluser are given
values according to the description in section 9.2:

9.2 Reading a member list
If in names a partitioned mainframe file, and in does not contain a member name, then
unit.1 will form a list of the members in the partitioned file - one member name per triggering of
the action block. In the triggering, the ISPF member statistics will be available in variables:

zlcdate Creation date for the member. Formatted in the 'national' date format by ISPF
zlmdate Modification date in 'national' date format
zlmtime Modification time, hour and minute. tt:mm
zlmsec Modifikation time, seconds, ss
zluser User ident for the user who did the latest modification of the member

unit.2 will contain 'MEM' as a hint that a member list is being communicated.

9.3 Reading a generic list of mainframe files
If in points to a generic name for a mainframe file list, then unit.1 will form a list of the files
adhering to the generic name - one file name per triggering of the action block.
A "generic name for at mainframe file list" is a file name containing one or several placehold-
ers: '*'. Each '*' means that characters in the file name up to the next '.' or up to the end of the
name is ignored, that is: any value here will qualify for adding the file-name to the list.
unit.2 will contain 'FIL' as a hint that a file list is being communicated.

9.4 Reading a UNIX directory
To read a UNIX file, you have to specify the path and the file name in one string.
Specifying only a path in in results in a reading of the directory, that is, a list of files and direc-
tories in the actual directory.
unit.2 will contain 'FIL' of 'DIR' as a hint of whether the current unit.1 is a file name or a
directory name.

10. infile='xx' Input for action blocks
infile
General order infile may be used instead of general order in. The variable infile points
to a file named <user>.xxx.data, where <user> is tso userident and xxx is the value of infile.

Example 8.2:
)action infile='myinput'
)& out='myuser.myout'

'Square of' word.1 'is' word.1**2
)endaction
The action block will read the dataset 'R2D2.MYINPUT.DATA' provided that tso userident is R2D2.

RXS Scripting Language Page 24
 november 25, 2021

www.rxs.se

The variable infile is primarily used when executing RXS in the background via JCL. See
section 36.

11. Internal queues as input and output
• If general order in or out is assigned not a dataset name but a name - that is: a string

obeying the RXS rules for elementary names - it is a reference to an internal queue in
RXS.

Example 11.1:
)action out='myqueue'

9
25
121
2

)endaction
)action in='myqueue'
 'Square of' word.1 'is' word.1**2
)endaction

Output will be the following lines in standard output: <user>.RXS.DATA:
Square of 9 is 81
Square of 25 is 625
Square of 121 is 14641
Square of 2 is 4

Notice:
• RXS programs may consist of several action blocks. These are executed in sequence,

that is top-down.
The first action block in example 9.1 writes to the queue 'myqueue'. The action-block uses no input,
accordingly it is executed only once.
The second action block uses the queue 'myqueue' as input, accordingly the block is executed once
for each element in 'myqueue'. General order 'out' is not assigned any value in the second action
block, accordingly this block writes to standard output: the dataset <user>.RXS.DATA.

• Queues are global: any succeeding action block in the RXS program may read a queue
created in a preceding action block.

• A RXS program may read and write an unlimited number of datasets, members and
queues. A RXS program may consist of an unlimited number of action blocks. Two or
more action blocks may write to the same queue, dataset or member - the succeeding
action block will in this case extend what the first action block has written. Two or
more action blocks may read the same queue, dataset or member. Reading from an ac-
tion block is always from beginning to end, regardless of any concurrent reading from
other action blocks.

• Unlike records in MVS files, which contains up to a maximum of 32.760 byte of data,
'records' in queues may contain up to 16 MB of data.

• Assigning a value to general order outfunc has no meaning when the action block
writes to a queue. The assignment will be ignored.

Example 11.2:
)action out='compressed_lyrics'

"What shall we do with the drunken sailor"
"Put him in the longboat till he's sober"
"Pull out the plug and wet him all over"
"Put him in the scuppers with a hose-pipe on him"
"Heave him by the leg in a running bow-lin"

)endaction
)action in='compressed_lyrics'

RXS Scripting Language Page 25
 november 25, 2021

www.rxs.se

)& i=0
i = i + 1
i"."
do 3

unit.1
end
"Early in the morning"
" "

)endaction
Line 9 in this example shows that the)action line itself may contain any RXS coding. This coding
will be executed once as execution hits the action block. Therefore the)action line is well suited
for initialization of counters. In this example the counter i is initialized.
Output will be like example 1.1, here adding three more verses to the lyrics.

12.)trigger and)notrigger; Reacting on empty input
Example 12.1:
)action out='myqueue'

wcount = random(0,5)
do wcount /* loop is executed 0 to 5 times */

random()
end

)endaction
)action in='myqueue'
)trigger

'Square of' word.1 'is' word.1**2
)notrigger

'Sorry, this time no numbers were produced'
)endaction
In this example the first action block produces a number of elements in the queue 'myqueue'. The
number is between zero and five. If by random the number is zero, the second action cannot be exe-
cuted - normally resulting in an error message from RXS. "queue 'myqueue' does not exist". Using
)trigger and)notrigger catches this situation:

If an action block reads from an empty (that is: non-existing) queue, RXS will terminate in er-
ror. But this exception may be catched: executing may continue in another branch of the pro-
gram. This is accomplished by parting the interior of the action block in two parts via the head-
ings)trigger and)notrigger. The)notrigger part is only executed if input is empty,
while the)trigger part is executed for each record in input.
The condition 'is empty' is true if any of these conditions do describe input:

(a) input is a queue which is empty (non existing)
(b) input is a member (in a dataset) which does not exist
(c) input is a member (in a dataset) which is empty
(d) input is a dataset which does not exists
(e) input is a dataset which is empty

If the)notrigger part of the action block is not programmed, situation (a) and (d) results in
termination in error, while situation (b), (c) and (e) results in nothing: no execution of the action
block, and no termination in error.
RXS does not distinguish between an empty versus a non-existing queue.

RXS Scripting Language Page 26
 november 25, 2021

www.rxs.se

13. cont: Flagging last record of input
If output from an action block is to be in the form of a list: some elements separated by comma,
then the RXS variable cont may be used.
cont Contains the value ',' each time the action block is executed, except the

last time, where cont is assigned the value ' '.

Other programming tasks than the production of lists may also benefit from the flag cont sig-
nalling 'now last triggering' of the action block.
RXS contains no similar flag for first record. Needing to flag this, some start_switch may
be initialized in the general orders. General orders are executed once, just before the first exe-
cuting of the action block.

Example 13.1:
)action out='myqueue'

9
12
121
2

)endaction
)action in='myqueue'
)& start=1

if start = 1 then do
"Here is the resulting list:"
"("
start = 0

end
word.1||cont
if cont = "" then do

")"
"That's all"

end
)endaction
Output is:
Here is the resulting list:
(
9,
12,
121,
2
)
That's all
|| is the concatenating operator in RXS, meaning consecutive writing of the strings before and after
the operator.
Another way of concatenating strings in RXS is to write an empty string between the two strings.
That is (referring to the example above):
word.1""cont
In the line above, "" is the empty string.
This last solution may create a conflict with RXS' notation for hexadecimal strings: "12AB"x means
the hexadecimal string 12AB.

RXS Scripting Language Page 27
 november 25, 2021

www.rxs.se

14. queuevar: Joining data from two queues
The RXS function queuevar('queue_name','queue_element') returns '1' if
queue_element does exist in the queue queue_name, otherwise '0' is returned.
If the queue queue_name does not exist, then '0' is returned.

Example 14.1:
)action out='q1'

9
121
25
2

)endaction
)action out='q2'

7
13
25
9

)endaction
)action in='q1'

if queuevar('q2', word.1) = 1 then do
word.1

end
)endaction
Output is
9
25
That is: elements existing in both queues.

15. getqueue: Keyed data from queues
If you put some input record into a RXS queue holding a comma - outside quotes - the thereby
established two parts of the record will be saved separately. In reading of the RXS queue, the
first part is assigned to variable unit.1 and the second part is assigned to variable unit.2.
As mentioned before, unit.1 is further split into variables word.1, word.2, word.3 etc.
unit.2 may also be accessed by the command getqueue:
The RXS function getqueue('queue_name', 'element_value') makes a search
through the queue 'queue_name' to find an element where unit.1 holds the value ele-
ment_value. If the search is successful, the function returns the value of unit.2. Other-
wise: if the element is not found, if the found element does not hold a value for unit.2 or if the
queue 'queue_name' is not found, getqueue returns an empty string (a string of length zero).

Example 15.1:
)action out='q1'
'Yrsa Nielsen', 'bike mechanic'
'Hugo Jensen', 'account manager'
'Niels Olsen', 'brazier'

)endaction
)action in='q1' /*Example of accessing unit.1 & unit.2 in a queue: */
unit.1 'is' unit.2

)endaction
)action /* Example of accessing unit.2 in a queue via getqueue: */
' '
'What position has Hugo Jensen: '

RXS Scripting Language Page 28
 november 25, 2021

www.rxs.se

getqueue('q1', 'Hugo Jensen')
)endaction
Ouput is:
Yrsa Nielsen is bike mechanic
Hugo Jensen is account manager
Niels Olsen is brazier

What position has Hugo Jensen:
account manager
The line getqueue('q1', 'Hugo Jensen') in the example, is a function call. The result of the function
call is a string. And strings in RXS are written out to stdout.

16. dropqueue: Dropping a queue
The instruction dropqueue removes a queue:

dropqueue 'queue_name'
When this instruction is executed, the queue queue_name turns non-existing or void. If an
action block tries to read the queue 'queue_name' the RXS program will terminate in error -
unless a)notrigger clause catches the exception (see section 12).
dropqueue is relevant when an action block wants to create a new content in a queue which is
formerly created by another action block.

17.)text block
Lines in the program surrounded by lines)text and)endtext constitutes a text block.
Text blocks are not interpreted by RXS. The lines in the text block are written unaltered to
stdout.
A text block may contain action blocks and these will be interpreted - see Section 18.
Text blocks may have general orders. A general order for at text block is an assignment in the
line starting with)text.
If the general order in is stated for a text block, RXS is terminated in error: Text blocks cannot
use input files or input queues.
In all other respect, general orders for text blocks are like general orders for action blocks.
See section 18 for an example.

18. Mixing)text and)action blocks
Example 18.1:
)text out='q1'

2
4
6

)endtext
)action in='q1'

hideword = word.1
if word.1 < 6 then do

)action in='q1'
hideword "multiply by" word.1 "is "word.1 * hideword

RXS Scripting Language Page 29
 november 25, 2021

www.rxs.se

)endaction
end

)endaction
Output is:
2 multiply by 2 is 4
2 multiply by 4 is 8
2 multiply by 6 is 12
4 multiply by 2 is 8
4 multiply by 4 is 16
4 multiply by 6 is 24
In this example it is necessary to move word.1 to the user defined variable hideword. This is
done in the outer action block - to prevent overwriting of the variable when word.1 is assigned
values in the inner action block during the run of the RXS program.

Notice:
• An action block may contain another action block: An action block is syntactically like

any other chunk of coding in the RXS program. That is, it may be conditioned by an
if-statement etc.

• An action block may reside into an action block, which may reside inside an action
block - etc.

• Action blocks may contain text blocks and text blocks may contain action blocks - in
any combination.

• Accordingly)trigger and)notrigger parts of an action block may contain any
hierarchy of action blocks and text blocks

• General orders for an action block are executed once when execution hits the block (In
the example above, the general orders for the inner action block are executed twice be-
cause the flow of execution in the RXS program will hit this action block twice)

The principle of the 'execution counter' sweeping down the program, activating line after line,
top to bottom, now becomes a bit complicated: When hitting an action block inside another
action block, the outer action block is halted while the inner action block is interpreted consum-
ing its own input. When finished, the outer action block turns active again.
If an action block tries to consume a RXS queue which is not yet produced, execution ends in
error (more specific rules in section 12).

Assigning variables instead of values to general orders can be relevant:

Example 33.8:
)text out='q1'

a1
a2
a3

)endtext
)action in='q1'

)action out='myqualif.mydsn('word.1')'
"What's up doc?"

)endaction
)endaction
This RXS program will create (or replace) three members, A1, A2, and A3, in the dataset
'myqualif.mydsn'. All three members will contain a line with the text "What's up doc?"

RXS Scripting Language Page 30
 november 25, 2021

www.rxs.se

19. func: Special interpretation of input
func
Not all data sources are simple collections of records and words. For instance, a DB2 table con-
tains rows and named variables, and these are to be read as result sets, governed by some SQL.
Combining this with RXS, it would probably be beneficial if the action block were triggered
every time DB2 fetches a row. To accomplish this, state general order func='sql', and
follow the instructions in Section 20 to write the SQL to govern the action.
Here is the list of values for func, constituting the list of data sources RXS can read:

• sql - Section 20
• prompt - Section 21
• dcl - Section 23
• namespace - Section 24
• xml - Section 25
• sorted and sorted_desc - Section 26
• mqbrowse, mqdrain and mqdrainkey - Section 27
• binary - Section 29
• <utf8 - Section 30
• >utf8 - Section 30
• <ascii - Section 30
• >ascii - Section 30

Default - when func is not given a value in the general orders for the action block - is to inter-
pret input as described in Section 9.
Whatever value func is given, the result is the triggering of the action block by a number of
instances of some set of data. The variable cont is implemented the same way in all cases:
cont holds the value ',' in all triggering of the action block except the last one, where cont
holds the value ' '.

20. Func='sql' Accessing DB2
General order func='sql' means that input to the action block will be interpreted as SQL.
That is, the lines of this input do not trigger the action block; instead the action block is trig-
gered by the rows produced when executing the lines of the input as SQL against a DB2-system.

20a. General order insql
insql
Func=’sql’ is the most common interpretation in RXS, so a short form exists: Instead of writing

)action in='q1'
)& func='sql'

you may write:
)action insql='q1'

this way indicating that the content of queue ‘q1’ is to be interpreted as SQL. This short form is
used in the examples below.

RXS Scripting Language Page 31
 november 25, 2021

www.rxs.se

Example 20.1:
)text out='q1'
 select account, name from myqualif.mytable

where department = :w_department
)endtext
)action insql='q1'
)& w_department='SALES'

name" has account number "account
)endaction
Output will be something like:
Peter has account number 45476
Hugo has account number 32243
Yrsa has account number 11223
- Presuming that these three employees are running the SALES department according to the DB2 ta-
ble myqualif.mytable.

20a. Host variables
'Host variables' might be used in the SQL clause, thereby using RXS variables as input to the
SQL call. Host-variables are prefixed by ':'. Example 20.1 above uses the host variable
w_department. The value 'SALES' is assigned to this RXS variable in the general orders for
the action block. Assignment may also take place in an action block nesting the action block:

Example 20.2:
)text out='q1'

select account, name from myqualif.mytable
where department = :w_department

)endtext
)action

w_department = 1448
)action insql='q1'

name" has account number "account
)endaction
)endaction

Assigning null values to host variables is done this way: If a RXS variable is assigned the value
'?', DB2 will read the value as null. This rule does not apply when calling stored procedure -
see Section 20e below.

Example 20.3:
)text out='q1'

update myqualif.mytable
set account = :w_account
where department = :w_department

)endtext
)action insql='q1'
)& w_department='SALES'
)& w_account='?'

"Ok, number of rows affected is:" sqlerrd.3
)endaction
In this example 'account 'is updated to null for all rows having department = 'SALES'

Notice the variable sqlerrd.3 in DB2 which always contains the number of rows affected by an
insert / update call.

20b. Output from a SQL select call
Output from the DB2 call is transported into RXS namespace using their DB2 names:
• select count(*) from myqualif.mytable will not work: count don't have a

name and accordingly cannot be used by RXS.

RXS Scripting Language Page 32
 november 25, 2021

www.rxs.se

• select count(*) as w_count from myqualif.mytable do work: the coun-
ter is transported out of DB2 and into RXS in the variable w_count.

• select count(*) as "number of rows" from myqualif.mytable will
not work: "number of rows" is not a valid RXS variable name

• select * from myqualif.mytable do work: DB2 replaces the * by the names
of all fields in the row, and the values are transported out of DB2 and into RXS using these
names.

Therefore, use of SQL clause 'select into' is illegal. Mapping of SQL variables to RXS variables
is handed automatically.
Data are presented to RXS in the same format as in SPUFI or in QMF:

• Decimal separator is '.'
• Numeric data are not prefixed by zeros
• Alphanumeric fields are post fixed by spaces up to their defined length in DB2.

Besides the fields read from DB2, a SELECT call assigns values to these 'extra' variables in
RXS:

sqlnames this variable holds all data names that are selected. The names are listed in
the variable separated by one blank

sqltypes this variable holds a 'type' for every data that are selected. The type is 'A'
for alphanumeric and 'N' for numeric. The types are listed in the variable
separated by one blank

sqllengths this variable holds the length of every data that are selected. The lengths are
listed in the variable separated by one blank (For BLOB/CLOB fields the
length is set to 100000 - but the actual length of a BLOB/CLOB determines
the length of the receiving RXS variable when a row is read - up to 16 MB)

sqlvalues this variable holds all data read in the select. The data are listed in the vari-
able separated by one blank. All data are of fixed length, according to
sqllengths. Numeric data is prefixed by spaces, alphanumeric data are
suffixed by spaces

sqlnulls this variable holds a null indicator for all data read in the select. '-' indi-
cates the data is read as null, '0' indicates the data is given a value. The
indicators are listed in this variable separated by one blank

20c. Choosing DB2 system
sql
The DB2 system to be accessed is specified at the installation of RXS. The actual RXS program
may deviate from this specification and access another DB2 system. General order sql is used
for this purpose. Use for instance sql='ddb2' if your installation holds a DB2 system called
'ddb2'. If you are to access more than one DB2 system during one execution of a RXS program,
use qualification in your table names - you cannot use different values of sql to switch be-
tween different systems during one execution of a RXS program. An error message will occur.

20d. SQL update, delete, insert
See Example 20.3 above.
If DB2 update or delete or insert is used in the RXS program, these changes are com-
mitted at termination of the RXS program.
If any part of the RXS program ends in error (error related to DB2 or any other error), if the user
leaves the program reversing out through the first window of the dialogue (according to Section
21a), or if the RXS program terminates in a programmed exit or return, then all DB2
changes are rolled back.

RXS Scripting Language Page 33
 november 25, 2021

www.rxs.se

If an action block is driven by a SQL-call which uses set, update, delete or insert,
then the action block will by triggered once - provided that this SQL call results in SQLCODE =
0.
Variable sqlerrd.3 contains the numbers of rows affected by an update or delete statement.
Any SQL call resulting in an SQLCODE not equal to zero and 100 will terminate the RXS pro-
gram with an error message. Any SQL call giving SQLCODE = 100 (no data) will trigger a
)notrigger part of the action block. If)notrigger is not coded, nothing happens: the
action block is not triggered, and no error is raised.

20e. Calling a DB2 stored procedure
The handling of null values is somewhat different when calling a DB2 stored-procedure, as
shown i example 20.4.
Example 20.4 demonstrates access of IMS data from RXS. CICS data may be accessed using
similar principles.

Example 20.4:
)text out='sqa'
CALL SYSPROC.DSNAIMS (

:IN_DSNAIMS_FUNCTION ,
:IN_DSNAIMS_2PC ,
:IN_XCF_GROUP_NAME ,
:IN_XCF_IMS_NAME ,
:IN_RACF_USERID :NULLP,
:IN_RACF_GROUPID :NULLP,
:INOUT_IMS_LTERM :NULLP,
:INOUT_IMS_MODNAME :NULLP,
:IN_IMS_TRAN_NAME :NULLP,
:IN_IMS_DATA_IN ,
:OUT_IMS_DATA_OUT ,
:IN_OTMA_TPIPE_NAME :NULLP,
:IN_OTMA_DRU_NAME :NULLP,
:IN_OTMA_USER_DATA_IN :NULLP,
:OUT_OTMA_USER_DATA_OUT,
:OUT_STATUS_MESSAGE ,
:OUT_RETURN_CODE)

)endtext
)action

IN_DSNAIMS_FUNCTION = 'SENDRECV'
IN_DSNAIMS_2PC = 'N'
IN_XCF_GROUP_NAME = LEFT('IMSOTMA',8)
IN_XCF_IMS_NAME = LEFT('IMS6',16) /* IMS system */
IN_RACF_USERID = ''
IN_RACF_GROUPID = ''
INOUT_IMS_LTERM = ''
INOUT_IMS_MODNAME = ''
IN_IMS_TRAN_NAME = ''
IN_IMS_DATA_IN = LEFT('GETACC SALES',2000)
OUT_IMS_DATA_OUT = LEFT('',32000)
IN_OTMA_TPIPE_NAME = ''
IN_OTMA_DRU_NAME = ''
IN_OTMA_USER_DATA_IN = ''
OUT_OTMA_USER_DATA_OUT = LEFT('',1022)
OUT_STATUS_MESSAGE = LEFT('',120)
OUT_RETURN_CODE = 0
NULLP = -1
)action insql='sqa'

OUT_IMS_DATA_OUT
OUT_OTMA_USER_DATA_OUT
OUT_STATUS_MESSAGE

RXS Scripting Language Page 34
 november 25, 2021

www.rxs.se

OUT_RETURN_CODE
)endaction

)endaction
Stored procedure SYSPROC.DSNAIMS is an IBM-provided procedure giving access to IMS from DB2:
Any IMS transaction code or IMS system command may be issued in IN_IMS_DATA_IN, and if the
stated function or command returns output, it will be presented in OUT_IMS_DATA_OUT.
SYSPROC.DSNACICS gives similar access to CICS.

20f. SQL limitations
A RXS program may contain up to 99 different SQL select call, and any number of other SQL
calls. All calls to SQL can be active at the same moment - action blocks using SQL may be wo-
ven into each other in any pattern. (The precise rule is: action blocks are numbered from the top
of the program. First 99 action blocks may use SQL select, the rest of the action blocks may
not).

20g. SQL isolation level
Isolation level in SQL is 'Cursor stability' If isolation level is to be changed, execute the follow-
ing SQL statement from inside RXS:
Set current packageset = 'DSNREXxx'
here xx is RR for 'Repeatable read', RS for 'Read stability', CS for 'Cursor stability' and UR for
'Uncommitted read'. Isolation level may be changed at any time in a RXS program, and the stat-
ed isolation level will govern all succeeding SQL call in the RXS program.

Example 20.8:
)text out='sqa'
 set current packageset = 'dsnrexur'
)endtext
)action insql='sqa'
)endaction
)text out='sqb'

select name from myqualif.mytable
where department = 'SALES'

)endtext
)action insql='sqb'
name
)endaction
This program will read all names from SALES department. Reading will be done under 'uncommitted
read' that is without checking locks in DB2.

20h. Comments in SQL
RXS accepts the 'normal' way of adding comments to a SQL-call: Any text inside SQL prefixed
by '--' will not be interpreted.

Example 20.9:
)action out='q1'

"select account, name from myqualif.mytable"
"where department = :w_department -- killroy was here..."
"-- and position = :w_position"
"-- and salary > 13000 "

)endaction
)action

w_department = "'1448'"
)action insql='q1'

RXS Scripting Language Page 35
 november 25, 2021

www.rxs.se

name" has account number "account
)endaction

)endaction

21. Func='prompt' Opening windows
Using func='prompt' in RXS opens for the programming of dialogs using windows. The
programming is 'non procedural': you specify in the coding which input you want at which point
in your logic, and the RXS engine generates windows and a dialogue to connect theese. The
user may iterate backwards among the windows when using the dialogue - this is not an issue
for the programmer but handled by RXS itself.

Example 21.1:
)action out='prm1'

'member', 'enter member name'
)endaction
)action in='prm1'
)& func='prompt'
)endaction
The first action block writes a record to the queue 'prm1'. Two parts of the record are written sepa-
rately, separated by comma. The second action block reads the queue 'prm1' and uses the infor-
mation to generate a window on the screen. The window will prompt the user of the dialogue to enter
a value for the variable 'member'. The user may act as indicated or may press F3 (end) to terminate
the dialogue. RXS generates a guiding text in the window pointing out these two possible responses.

Example 21.2:
)action out='prm1'

'member', 'enter member name'
)endaction
)action in='prm1'
)& func='prompt'

)action in='myqualif.mydsn('member')'
)& out='que1'

unit.1
)endaction
)action out='myqualif.mydsn('member')'
)& in='que1'
)& outfunc='sub'
)& start=1

if start = 1 then do
"//* This member is submitted" date()time() userid()
start = 0

end
unit.1

)endaction
)endaction
The example reads a member from a dataset, adds a new line at the top of the member, submits and
saves the member. The user is prompted to enter the name of the member that is to be acted on.

Example 21.3:
)action out='prm1'

'account', 'Enter (part of) account number'
'department', 'Enter department number'

)endaction
)action in='prm1'
)& func='prompt'
)& out='sql1'

"select account, name from myqualif.mytable "

RXS Scripting Language Page 36
 november 25, 2021

www.rxs.se

"where account like '"account"%' "
"and department = '"department"' "

)endaction
)action in='sql1'
)& func='sql'

"name: "left(name,15)" has account: "account" ,
"(department "department")"

)endaction
Here we have two queues, prm1 and sql1, and three action blocks.
The first action block writes two rows on a queue, prm1, each row containing two parts, separated
by comma.
The other action block writes something (in SQL syntax) on a queue sql1.
Output from the first action block is input to the second, governed by general order
func='prompt'
The window on the screen looks:

Repeating - with more precision:
func='prompt' implies that information in the input queue is used to format a window on
the screen, prompting the user to enter the value for one or more variables. The format and lay-
out of the window depends on the amount of data shown; when appropriate a full screen panel
will be shown instead of a window.

• The first part of each element in the input queue names the variable which is to be as-
signed a value.

RXS Scripting Language Page 37
 november 25, 2021

www.rxs.se

• The second part of each element in the input queue is a guiding text to be shown next to
the name of the variable and the input field. This part of the element may be omitted. In
such case, only the name of the variable and the input field is shown in the window.

• Strings in the elements of the queue are in quotes. Applies even to the name of the vari-
able: it is not a variable; it is a string indicating the name of a variable.

• When the user has entered values for these variables (or for this variable) and presses
enter, the action block having func='prompt' will be triggered once. Assigned
values are at hand inside the action blocks by their names. If the user presses F3 (end)
instead of enter, an optional)notrigger part of the action block is triggered. If no
)notrigger is programmed, the RXS program returns to a former state according to
the following rules:

21a. The dialogue generated by prompt
If a RXS program contains at least one action block which is using func='prompt', the
execution of the program - as seen from the user - will go like this:
If the user presses F3 (end) when output from RXS is shown on the screen, a re-display of the
first window in the dialogue will take place
If the user presses F3 (end) when a RXS window is prompting for input, a re-display of the for-
mer window in the dialogue will take place. If the current window is the first window of the
dialogue (or the sole window of the dialogue) then the RXS program terminates.
If the user presses enter in the same situation, the RXS program will prompt for input in the
current window or display the next window, depending on whether the user has entered some
input before pressing enter.
But do not put notice on these rules: As seen from the programmer of the RXS program, this is
transparent. You indicate in the program which information you want at which point in the logic
- the dialogue is not programmed (but optionally may be adjusted - see below).
Commit or rollback of changes made by the RXS program is affected by the way the user han-
dles the dialogue. The commit point in RXS is - as mentioned - just prior to the display of out-
put from RXS. If the program never reaches this point, a rollback is performed, and no update
of DB2, MQSeries or sequential files is done. Therefore, if the user reverses out of the program
by pressing F3 (end) in a re-show of each previous shown windows of the program, and contin-
ues to do this until the program terminates, then nothing is committed. If the user cycles several
times through the logic, pressing F3 (end) after output is displayed, commit will take place each
time the program reaches the point where output is to be displayed. Messages on screen will
inform of commit and rollback.
If the user makes a reverse exit of the program, backing his way out through all windows in-
cluding the first window, without having ever reached a display of output, RXS will set a return
code +4 to ISPF.

21b. Tailoring the dialogue using programming
If the programmer uses return in the RXS program, this will force a jump to the first window
of the dialogue - if the user has already seen this window. If not, the RXS program terminates.
If the programmer uses exit in the RXS program, this will unconditionally terminate the pro-
gram.
Programming a)notrigger part of an action block which is using prompt will catch when
the user presses F3 (end). For instance programming exit in the)notrigger block will
cause the program to terminate if the user presses F3 (end) in this window.
Programming general order outfunc='nop' means that output is not displayed. According-
ly, the user has no occasion to press F3 (end) in the termination situation. Therefore, the pro-
gram terminates unconditionally when the logic of the program is executed once. The same

RXS Scripting Language Page 38
 november 25, 2021

www.rxs.se

applies if the program does not produce any sequential output (any file). These are 'ok' situa-
tions, and any changes are committed.
To validate input from the user, use instruction set_halt:

Example 21.4:
)action out='prm1'

'member', 'enter member name'
)endaction
)action in='prm1'
)& func='prompt'
 if datatype(left(member,1)) = 'NUM' then do
 set_halt "Member-name must start with a chararacter"
 end
)endaction
If the first charater in the string entered on the screen is numeric, then the panel is re-displayed with
the indicated message. If the error is corrected, the dialogue continues normally.

To put additional guidance on the input-screen, use instruction set_message:
Example 21.5:
)action out='prm1'

'member', 'enter member name'
 set_message "Member-name starts with a chararacter"
)endaction
)action in='prm1'
)& func='prompt'
)endaction
The message is displayed first time the RXS program reaches a panel-display. This could be the final
display of output, but in this case, it is the prompt.

21c. Tailoring the dialogue using general orders
prompt
Setting general order prompt='yrsa' will internally name the window: it now bears the
name 'yrsa'. A named window will remember its content, entailing that a re-show of the window
later in the same ISPF session will re-display its values. The re-display may even be initiated
from another RXS program provided that the variable names and the guiding texts which are set
up in the window by both programs are identical. And of course, provided that the two pro-
grams name the window identical.
The variable prompt may hold a maximum of 6 characters (Window content is saved in ISPF-
tables).
A window without a name will function the same way, and remember its content, provided that
no other not-identical window without a name is used in the users ISPF-session. Again, win-
dows are considered identical if they use identical variable names with identical guiding texts.

promptsource
Setting a value for general order promptsource governs the content of the window in the
event of a re-display during the TSO-session.
There are three possible values:

• 'U' (default): If the window is re-displayed, all values are re-displayed too - provided
that the window is unique, according to the discussion of prompt above. If the window
has not been displayed before, values assigned in the RXS program will initially be
shown.

• 'P' Values assigned in the RXS program will always be shown in a re-display of the
window.

• 'I' In a re-display of the window, all values are blank.

RXS Scripting Language Page 39
 november 25, 2021

www.rxs.se

promptall
Setting a value for general order promptall governs whether the user is allowed to continue
by pressing enter without entering a value in every field in the window.
There are two possible values:

• 'Y' (Default) The user must enter a value in every field. Not obeying this, an error
message will prompt the user to do so if he presses enter.

• 'N' The user may do as he likes: enter a value in none, in some, or in all fields of the
window when pressing enter.

promptlgth
Setting a value for general order promptlgth will determine the length of the input fields in
the window. Default length is 42 characters; any other value between 0 and 130 may be entered
in promptlgth.
Setting a length of zero makes it pointless to display the window. Accordingly, it is not dis-
played. This may be used as a mechanism for transporting variables between RXS programs:
making a prompt of a named window which is holding some values will make these values part
of the RXS program. This is also true if the window is not actually displayed.
caps
Setting general order caps='on' will transform any input in the window to upper case. Set-
ting caps='off' will not transform input. caps='on' is default.

zwinttl
This general order sets a windws-title: Assigning a value to variable zwinttl in the RXS pro-
gram results in that value being written in the top part of the frame of the window - as a title.

21d. A more advanced example
In this example, window content - that is the names of variables and the guiding texts - reflects
data originating from DB2, instead of being stated in the program:

Example 21.6
)text out='sql1'

select distinct department from our.employee
)endtext
)text out='sql2'

select name, salary from our.employee
where department = :wdep

)endtext
)text out='sql3'

update our.employee set salary = :wsalary
where department = :wdep and name = :name

)endtext
)action insql='sql1'
)& out='prm1'

department
)endaction
)action in='prm1'
)& func='prompt'
)& prompt='prm1'
)& promptall='n'
)& zwinttl="Select department(s) entering 'X'"
)& promptlgth=1

)action in='prm1'
if value(unit.1) = 'X' then do /*if selected on screen*/

wdep = unit.1
)action insql='sql2'
)& out='prm2'

RXS Scripting Language Page 40
 november 25, 2021

www.rxs.se

name , "(Salary: "salary")"
)endaction
)action in='prm2'
)& func='prompt'
)& prompt=left(wdep,6)
)& promptall='n'
)& promptlgth='1'
)& zwinttl=wdep": Grant a 10% salary rise entering 'X'"

)action insql='sql2'
if value(name) = 'X' then do /*if selected on screen*/

wsalary = trunc(salary * 1.1)
left(name "("wdep")",25) "is granted a 10% salary",
"rise. New salary:" wsalary
)action insql='sql3'
)endaction

end
)endaction

)endaction
end

)endaction
)endaction

It is assumed that DB2 table our.employee contains fields Department, Name and Salary. Unique key
is Department + Name.
Running the example will at first show a window listing all departments:

RXS Scripting Language Page 41
 november 25, 2021

www.rxs.se

If one or more departments are selected using an 'X', a window showing a list of all employees and
their salary is shown for each selected department.
Any employee selected in this window using an 'X' will be given a 10% salary raise. The user (the
manager...) may cycle between the windows using 'enter' or 'F3'.

SALES department actually contains 41 employees; therefore RXS switches to a full screen window
with scrolling:

RXS Scripting Language Page 42
 november 25, 2021

www.rxs.se

When the last one of the departments selected on the first screen is processed, a list of employees
receiving a salary rise is shown (see below), and all updates are commited: the new salaries are writ-
ten to DB2. If the user at any point before this final display leaves the program (pressing F3 repeated-
ly) all updates are rolled back, and no employee is receiving any salary rise. The user will in this situ-
ation be notified that all updates are rolled back.
If commit is reached, this is what is finally displayed: a message confirming 'commit' and a list of ac-
tions made:

EDIT MYUSER.RXS.DATA SQL commit
Command ===> Scroll ===> CSR
****** ***************************** Top of Data********************************
000001 Wrinkley (MANAGEMENT) is granted a 10% salary rise. New salary: 122611
000002 Marenghi (MANAGEMENT) is granted a 10% salary rise. New salary: 40700
000003 Yrsa (SALES) is granted a 10% salary rise. New salary: 74048
000004 Frederik (SALES) is granted a 10% salary rise. New salary: 58080
****** **************************** Bottom of Data *****************************

RXS Scripting Language Page 43
 november 25, 2021

www.rxs.se

If the program is executed several times, the first window (listing departments) will remember its se-
lections and make a redisplay of what was entered before. The other windows will not remember their
selections because guiding texts have changed due to the already granted salary rises.

23. Func='dcl'. DB2 table information
A DCL library is a partitioned dataset containing DCL structures, created by the DB2 dclgen
command. The DCL structure describes the fields of a DB2 table. It is intended for use in the
access of DB2 from compiled languages like COBOL.
Using func='dcl' implies that input to the action block must be a member of a dataset con-
taining DCL. The action block is triggered once for each field described in the DCL structure.
Information about format and field name is then available inside the action block.
The same information may be read from the DB2 system catalogue by using func='sql', but
accessing the DCL area might require less coding in the RXS program.
The following variables are assigned values for use inside the action block:

dataname DB2 field name for current field
datatype Type of field. Contains DATE TIMESTAMP CHAR DECIMAL

VARCHAR, BLOB, CLOB or SMALLINT
length Number of bytes (Example: 26 for a timestamp) - or maximum number of

digits including decimals - if the field type is numeric
decimals Only if field type is numeric: Number of digits after the decimal point
nulls A value of '1' if the field holds a null indicator. '0' if the field does not

hold a null indicator
Example 23.1:
)action in='ourquali.dcl.cobol(ourtab)'
)& func='dcl'

if nulls = '1' then do
" IF OURTAB-"dataname"-I = -1 "
if datatype = 'DECIMAL' ! datatype = 'SMALLINT' then do

" MOVE ZERO TO OURTAB-"dataname
end
else do

" MOVE SPACE TO OURTAB-"dataname
end
" END-IF"

end
)endaction
The resulting COBOL code will initialize all fields in a DB2 structure if they hold a null indicator and if
the indicator actually indicates the field to be null. Such coding may come in handy after a successful
DB2 select call in COBOL.

24. Func='namespace'. Using the internal RXS format: namespace
Example 24.1:
)text out='q1'

name(Peter Jensen)
age(32)
position(bike mechanics)

RXS Scripting Language Page 44
 november 25, 2021

www.rxs.se

nationality(danish)
;
name(Hugo Jensen)
position(account manager) age(44)
nationality(danish)
;
name(Niels Olsen)
age(19) position(CEO) nationality(greek)

)endtext
)action in='q1'
)& func='namespace'

if nationality = 'danish' then do
left(name,25)" "left(position,20)" age:"age

end
)endaction
Output is:
Peter Jensen bike mechanics age:32
Hugo Jensen account manager age:44

The core principle of the namespace file-format is assigning a value to a variable this way:
variable(value)
A namespace in RXS is a file containing groups of such assignments, the groups separated by
';'. Refer to the text block in top of example 24.1 above.
Using func='namespace', each group in the file triggers the action block. Example 24.1
contains three groups; accordingly, the action block is triggered three times.
Notice:

• Writing more than one assignment per line is ok
• One assignment may span several lines. The assignment starts with (and ends with

). In between any number of lines may exist. In assigning the value to the variable, the
lines are concatenated separated by one blank character. The interleaving blank can be
avoided using the concatenation operator || at the end of the line.

• Assignments are not to be put in quotes. If assignments are quoted, the quotes will be
part of the assigned value.

• Quotes, single and double, may be used anywhere inside assignments.
• Parenthesis may be used inside assignments, but they must be balanced: Same number

of) and (.
• Variables assigned a value in a previous group of assignments, not given a value in the

current group of assignments, are empty (that is: strings of length zero).
A pre screening of the namespace file may be conducted using the variable spacerow.

spacerow Contains the current namespace group in namespace format

Example 24.2:
Using spacerow:
)text out='q1'

name(Peter Jensen)
age(32)
position(bike mechanics)
nationality(danish)
;
name(Hugo Jensen)
position(account manager) age(44)
nationality(danish)
;
name(Niels Olsen)

RXS Scripting Language Page 45
 november 25, 2021

www.rxs.se

age(19) position(CEO) nationality(greek)
)endtext
)action in='q1'
)& func='namespace'
)& out='qspace'

if nationality = 'danish' then do
spacerow

end
)endaction
)action in='qspace'
)& func='namespace'

left(name,25)" "left(position,20)" age:"age
)endaction
At first, data is put into the queue 'q1', after which selected groups are copied to the queue
'qspace' from which they are formatted to output in the last action block.
Output will be as in example 24.1

25. Func='xml' Accessing XML
Example 25.1
)text out='xx'

<Order Salesrep="Yrsa" Date="2006-05-05">
<CustomNumber>4711</CustomNumber>
<CustomContact>

Wilbur Jensen & John Doe
</CustomContact>
<ShippingAddress A1="Solitudevej 14" A2="2840 Holte"/>
<Detail>

<Itemno>1864</Itemno>
<Quantity>4</Quantity>

</Detail>
<Detail>

<Itemno>1448</Itemno>
<Quantity>2</Quantity>

</Detail>
</Order>

)endtext
)action in='xx'
)& func='xml'

do i = 1 to xml.0
if i > xml_elem_unch then do

intend = left(' ',i * 2)
if i < xml.0 | xml = '' then do

intend""xml.i
end
else do

intend""xml.i "=" xml
end

end
end
do i = 1 to xml_attrib.0

intend" "xml_attrib.i"="value(xml_attrib.i)
end

)endaction

Output is:

Order

RXS Scripting Language Page 46
 november 25, 2021

www.rxs.se

Salesrep=Yrsa
Date=2006-05-05

CustomNumber = 4711
CustomContact = Wilbur Jensen & John Doe
ShippingAddress

A1=Solitudevej 14
A2=2840 Holte

Detail
Itemno = 1864
Quantity = 4

Detail
Itemno = 1448
Quantity = 2

The RXS function value (third last line) performs a double de-reference: xml_attrib.i holds
a name of a variable as a value, and the value of this variable is found.
Notice that XML is a 'generalized' language. Accordingly, the above RXS program (the second action
block) will format (or de-format) any XML structure.

func='xml' presumes input is ‘well formed' XML. Otherwise execution is terminated in
error.
The input file is considered as being one single piece of XML, containing just one starting tag
that is closed in the last record.
The input XML structure for an action block using func='XML' triggers the action block every
time the XML structure assigns values for one or more variables. That is, every time an element
is assigned a value, or some attributes at the same level are assigned values, or both.
'Escape sequences' in the XML are translated to their equivalent characters (notice the element
in CustomContact in Example 25.1 above).
'White space' around elements is ignored (again notice the element in CustomContact in
Example 25.1 above).
The following RXS variables are assigned values in the triggering:

xml.i A stem containing the hierarchy of names behind the actual value.
xml.0 contains the number of elements in the stem, that is, the num-
ber of names in the actual hierarchy.
'XML namespace' is ignored: When namespace is used, only the part
of the name behind ':' is recorded.

xml_cnt The number of names in the actual hierarchy (equal to xml.0)
xml_attrib.i A stem containing names of all attributes that are assigned a value at

this level in the hierarchy. xml_attrib.0 contains the number of
elements in the stem, that is the number of attributes at this level in the
hierarchy.
'XML namespace' is ignored: When namespace is used, only the part
of the name behind ':' is recorded

xml_attrib_cnt The number of attributes at this level in the hierarchy (equal to
xml_attrib.0)

xml The value of the element (might be content of a CDATA string in the
XML)

xml_elem_unch The number of names in the current hierarchy that belong to the same
path compared to the previous triggering of the action block. That is:
elements numbered from 1 up to xml_elem_unch are part of the
same path as in the previous triggering.

Besides these variables, attributes are at hand inside the action block. If for instance the actual
path in the XML contains the assignment yrsa = "14", the variable yrsa will contain the
value 14.

RXS Scripting Language Page 47
 november 25, 2021

www.rxs.se

Notice: RXS is not case sensitive; accordingly attributes Yrsa and yrsa are considered the
same variable
If the actual path in the XML only assigns values to attributes, xml is empty (is a string of
length zero).
If the actual path in the XML only assigns value to the element, then xml_attrib_cnt and
xml_attrib.0 is zero.
Attributes given value in a former triggering, are empty (string of length zero) in the actual trig-
gering - unless the current path in XML assigns new values to these.

Referring to example 25.1: in the first triggering of the action block xml.1 contains "Order", xml.2 con-
tains "Salesrep" and xml contains "Yrsa". xml_elem_unch is zero.
In the second triggering of the action block xml.1 contails "Order", xml.2 contains "Date" and xml
contains "2005-05-05". xml_elem_unch contains 1 indicating that only first element in xml. is un-
changed compared to the first triggering.

Constraints:
• XML elements may not contain unbalanced set of '{' and '}'.
• Maximum length of an XML structure is 16 MB.
• Maximum length of an element is 0,5 MB
• Maximum length of an attribute value is 1000 bytes
• Maximum length of a tag name or a attribute name is 1000 byte
• Maximum depth of hierarchy of tags behind an element is 100 tags
• Maximum number of attributes per tag is 100

RXS Scripting Language Page 48
 november 25, 2021

www.rxs.se

In example 25.1 following values are assigned during the seven triggerings of the action block:
xml.1 xml.2 xml.3 xml.0 xml xml_elem_unch
Order - - 1 - 0
Order CustomNumber - 2 4711 1
Order ShippingAddress - 2 - 1
Order Detail Itemno 3 1864 1
Order Detail Quantity 3 4 2
Order Detail Itemno 3 1448 1
Order Detail Quantity 3 2 2

Besides, attributes are given values.

Example 25.2
The input in this example is one file containing a sequence of separate xml-structures.
)text out='xx'

<order no="1"><type>Pizza No 14</type><quant>3</quant></order>
<order no="3"><type>Slush Ice</type><quant>2</quant></order>

)endtext
)action in='xx' /* separate input */
)& i=0

i = i + 1
indv = unit.1
)action out='q'i

indv
)endaction

)endaction
)action /* read the separated input */

do ii = 1 to i
'-------------- XML-structure number ' ii '---------------'
)action in='q'ii
)& func='xml'

do i = 1 to xml.0
if i > xml_elem_unch then do

intend = left(' ',i * 2)
if i < xml.0 | xml = '' then do
intend""xml.i

end
else do
intend""xml.i "=" xml

end
end

end
do i = 1 to xml_attrib.0

intend" "xml_attrib.i"="value(xml_attrib.i)
end

)endaction
end

)endaction
The first action block (marked with /* separate input */) puts every single input record into a separate
queue, named 'q1', 'q2', 'q3' and so forth. The variable i contains the total number of queues.
The next top-level action block (marked with /* read the separated input */) reads these queues one af-
ter one and analyzes them as XML.
Output is:
---------------- XML-structure number 1 ---------------
order

RXS Scripting Language Page 49
 november 25, 2021

www.rxs.se

 no=1
 type=Pizza No 14
 quant=3
---------------- XML-structure number 2 ---------------
order
 no=3
 type=Slush Ice
 quant=2

26. Func='sorted' Func='sorted_desc' Sorting input
Example 26.1
)text out='myqueue'

9
25
121
2

)endtext
)action in='myqueue'
)& func='sorted'

'square of' word.1 'is' word.1**2
)endaction
Output is:
square of 2 is 4
square of 9 is 81
square of 25 is 625
square of 121 is 14641

func='sorted' performs a sorting of the input before it is presented to the action block.
Input records are sorted ascending on the value of unit.1.
If all values of unit.1 are numeric, a numeric sort is performed; otherwise, an alphanumeric
sort is performed:

Example 26.2
Alphanumeric sort:
)text out='myqueue'

9
25
UPS
121
2

)endtext
)action in='myqueue'
)& func='sorted'

unit.1
)endaction
Output will be like this (Sorting is primarily on byte 1, that is 121 is ranked before 2 etc.):
UPS
121
2
25
9

If unit.2 is present in input, it will also participate in the sort. In this case unit.1 is the
sorting key of the item and unit.2 is the value of the item:

Example 26.3
)action out='myqueue'

9, 'Road Runner'
25, 'Winnie the Pooh'
121, 'Cinderella'

RXS Scripting Language Page 50
 november 25, 2021

www.rxs.se

2, 'The Big Bad Wolf'
)endaction
)action in='myqueue'
)& func='sorted'

unit.2
)endaction
Output is:
The Big Bad Wolf
Road Runner
Winnie the Pooh
Cinderella

 If length of any input (unit.1) record exceeds 256, then consider putting input in unit.2
and create a sort criteria in unit.1.
If length of any input (unit.1) record exceeds 256 and is less than 4000, and if unit.2 is
not used, the sorting schema changes to an alphanumeric sort of unit.1.
If

• the length of any unit.1 in input is larger than 4000
• the length of any unit.1 is larger than 256 and unit.2 is used

then the sort in RXS is terminated in error

26a. Sorted_desc
func='sorted_desc' works like func='sorted', except that a descending sort on
unit.1 is performed.

27. Func='mqbrowse' and other access to MQSeries
RXS reads and writes queues defined in IBM Webspere MQSeries. Any changes on queues dur-
ing the access are committed, provided the RXS program ends normally. If the program ends in
error (error related to MQSeries or any other error), if the user leaves the program reversing out
through the first window of the dialogue (according to Section 21a), or if the RXS program
terminates in a programmed exit or return, then all MQSeries changes are rolled back.
mq
General order mq contains the name of the actual MQSeries system. mq may only be given one
value in a RXS program: a RXS program cannot access several MQSeries queue managers.
Default value for mq is stated at installation of RXS.
In RXS, a MQ message can hold up to 16 MB of data.

27a. Reading messages from MQSeries: Func='mqbrowse'
in
For func='mqbrowse' the name of the queue to read from is stated in general order in.
readlim
As general order for the action block may be stated readlim: the maximum number of mes-
sages to be read. Default for readlim is 3,000,000.

The reading assigns values to these variables:

unit.1 Contains the current message
mq_backout Backout-count, that is the number of times this message previously

RXS Scripting Language Page 51
 november 25, 2021

www.rxs.se

has been read in vain, because of rollbacks in a reading application
mq_messid Message-ident: a 24 character field containing the unique key as-

signed to the message by MQSeries
mq_putdate Date at which the message was created on the queue (Greenwich

date)
mq_puttime Time at which the message was created on the queue (Greenwich

mean time)
mq_applname A name of the application which created the message on the queue
mq_appltype The environment of the application that created the message on the

queue (CICS, DOS, AIX, MVS, OS390, WINDOWS...)
Each message triggers the action block. In MQSeries terms, 'mqbrowse' is a MQGET with the
browse-flag set.

27b. Destructive reading of MQSeries: Func='mqdrain'
func='mqdrain' functions like func='mqbrowse', but reading is destructive, meaning
that the accessed queue is empty after reading. In MQSeries terms, 'mqdrain' is a normal
MQGET. A value in readlim will limit the destructive reading, for instance readlim=30 will
read and delete the 30 oldest messages on the queue.

27c. Destructive reading of one message: Func='mqdrainkey'
mq_messid
func='mqdrainkey' works like func='mqdrain', but only one message is read. The
message to be read is stated in general order mq_messid (24 character MQ-message-id).
Reading is destructive, meaning that the one message read is removed from the queue.

Example 27.1
)action in='ourqualf.inpque'
)& func='mqbrowse'

if substr(unit.1,4,10) = '2007-01-06' then do
foundmess=mq_messid
)action in='ourqualf.inpque'
)& func='mqdrainkey'
)& mq_messid=foundmess

"Deleted: "left(unit.1,40)
)endaction

end
)endaction
 The program deletes all messages having date '2007-01-06' from the stated queue. The date is locat-
ed in position 4 in the messages and is 10 bytes long. A report is written on <user>.RXS.DATA con-
taining the first 40 byte of every deleted message.

27d. Writing messages to MQSeries: Outfunc='mqput'
out outfunc
If an action block has outfuc='mqput' output will be written to the MQSeries queue
named by general order out.

Example 27.2
)action out='ourqualf.thisque'
)& outfunc='mqput'
)& mq='mqdc'

"What hath God wrought?"
"One small step for man, a giant leap for mankind"

)endaction

RXS Scripting Language Page 52
 november 25, 2021

www.rxs.se

This RXS program writes two messages on the MQSeries queue 'ourqualf.thisque'. The
queue belongs to MQSeries system 'mqdc'. mq_putappltype is set to 'OS390' and
mq_putapplname is set to the current userid.

29. Accessing files on UNIX mainframe

29a Reading from UNIX
If in points to a name containing one or several '/' it is considered the name of a path or a file
(inclusive path) on the UNIX HFS file system on the mainframe.
Specifying only a path in in results in a reading of the directory, that is, a list of files and direc-
tories in the actual directory will be presented in unit.1. unit.2 will contain 'FIL' of 'DIR' as a
hint of whether the current unit.1 is a file name or a directory name.
As default any 'newline characters' ('15'x) in the UNIX-file will break the file into records
when the file triggers an action block in RXS - and the newline characters will be removed. And
opposite: records are concatenated adding 15'x' between each record when writing from RXS to
the UNIX file system. This entails that text files keep line breaks when transmitted between the
two milieus.
The default behavior can be overruled:
func='binary' when reading from UNIX: indicates no handling of newline characters: all
characters in the UNIX-file are transmitted. Accordingly, the input data from UNIX into RXS
will consist of just one record. (But notice that a record internally in RXS may consist up to 16
MB of data).
outfunc='binary' when writing to UNIX: all records written are concatenated in the
UNIX-file without any interleaving newline characters.
(Notice UNIX files are strings (or streams) of bits, because no notion of record exists in UNIX.)

Example 29.1
)action in='/home/r2d2/example.txt'

unit.1
)endaction
The example copies the indicated unix file to the mainframe file rxs.data. Being a text-file, each line
triggers the action block separately, and the coding above results in a mainframe file where records
maps the lines of the text file.

Example 29.2
)action in='/home/r2d2/example.bin'
)& func='binary'

do forever
if length(unit.1) > 80 then do

left(unit.1,80)
unit.1 = substr(unit.1,81)

end
else do

unit.1
end

end
)endaction
The example copies the indicated UNIX file to the mainframe file rxs.data. The action block is trig-
gered just once, because func='binary' will treat the UNIX file as one single string of bytes. Writing
this string on a mainframe file requires some programming to break the string into records, because

RXS Scripting Language Page 53
 november 25, 2021

www.rxs.se

a mainframe record only may contain 32.760 bytes. The programming in the action block solves this
by creating 80 byte records when writing to the mainframe.

29b. Writing to UNIX
If out points to a name containing one or several '/' it is considered the full name (inclusive
path) of a file on the UNIX HFS file system on the mainframe.
If out points to a new (a non-existent) file, the new file will get acces-control-bits set to 'write
and execute' for the user, write and execute for the group (provided that a group has been as-
signed to the directory in which the file resides) and 'read' for all other users.

UNIX commands may be executed from inside RXS using the general order ad-
dress='unix'. See section 33.

30. Character transformation between utf-8, ascii and ebcdic
Example 30.1
)action out='q1'

"Alas my love"
"You do me wrong"
"To cast me off"
"Discourteously"

)endaction
)action in='q1'
)& func='>utf8'
)& outfile='yrsa'
)& outfunc='browse'

unit.1
)endaction
The example transforms the text using character representation utf-8, writing the file to dataset <us-
er>.yrsa.data

Notice ISPF browse primary command ==> display utf8, which makes utf-8 characters
readable.

Example 30.2
)action infile='yrsa'
)& func='<utf8'

unit.1
)endaction
The example assumes input being in character representation utf-8, converting it to ebcdic. The re-
sult is a re-creation of the original file from example 30.1 above.

The following transformations exists:

func='>utf8' Transforms ebcdic characters to utf-8
func='<utf8' Transforms utf-8 characters to ebcdic
func='>ascii' Transforms ebcdic characters to ascii
func='<ascii' Transforms ascii characters to ebcdic

Character transformation is mostly used when - but not limited to - communicating to and from
UNIX.

RXS Scripting Language Page 54
 november 25, 2021

www.rxs.se

31. imbed='xx' and other ways of calling external
Programs external to RXS may be called the following way:

• Calling REXX and CLIST: call 'progrnme' 'parm' will call the REXX pro-
gram progrnme using the parameter parm. Notice the use of quotes: RXS assumes
every un-quoted name to be a variable. An alternative is to change address to tso, ispex-
ec or attach, and then call the CLIST or REXX using the call format for these environ-
ments.

• Changing address: To use commands in tso, ispexec, attach and any other environment:
change address to the environment, and send one or more strings to output, the string(s)
containing the commands. See Section 33h.

• Calling RXS programs: call 'rxs' 'progrnme' 'parm' will call the RXS pro-
gram progrnme using the parameter parm. Notice: this same way, a REXX program
may call a RXS program. Notice the use of quotes: RXS assumes every un-quoted name
to be a variable. The prerequisite for calling is that a RXSLIB library is allocated - see
'Installation of RXS'. If both calling and called RXS program uses SQL, it is better to
use imbed:

• Imbed is an alternative way of calling (or imbedding) a RXS program from RXS. The rest
of this section will describe imbed:

)imbed in RXS works like copy / include in other languages. If execution of a RXS program
reaches this line
)imbed imbed='mymbr'
execution continues in the member 'mymbr'. This member must by found in a dataset allocat-
ed to file RXSLIB in the TSO-session. As execution reaches the end of mymbr, then the line
after the imbed-point in 'main' is executed next. All variables and queues in RXS before the
imbed-point is also known inside mymbr. The connection also goes opposite: New values as-
signed to these values inside mymbr are at hand after return to 'main' RXS. The same applies to
queues created inside mymbr.
imbed
Imbed uses one general order: imbed must be assigned the name of the member containing the
RXS code to be imbedded.
Imbedded RXS coding must by syntactically correct considered on its own. For example, you
cannot write an action block starting with)action in main RXS and terminated with
)endaction in imbedded RXS.
Imbed has two special features:

• imbed=xvar do work: If a variable (here xvar) is assigned the name of a member, the
variable can be used to govern imbed. That is: imbed is solved during execution, not in
some pre-processing phase.

• The coding inside the imbed member may itself contain)imbed. This chain of imbed
may be of any depth.

Executing external code using imbed means that the imbedded coding will participate in the
same unit-of-work as main RXS. Any error or a programmed exit will result in a rollback
of any changes in files, MQSeries queues or DB2 tables.

If a RXS program uses SQL, and the program transfers control to another RXS program, the
other program also using SQL, the transfer ought to be done by)imbed. Imbed supports any
pattern of concurrent SQL cursors in the two RXS programs, and both programs will run in the
same unit-of-work.

RXS Scripting Language Page 55
 november 25, 2021

www.rxs.se

Using other call interfaces than imbed, the RXS program and the external coding will work
in separate units-of-work. Meaning that the called coding may commit some change, while
main RXS makes a rollback - or the opposite.

Example 31.1
)text out='degree'
 set current degree = 'ANY'
)endtext
)text out='isola'
 set current packageset = 'DSNREXUR'
)endtext
)action in='isola'
)& func='sql'
 say "Using isolation level UR, that is: no DB2 locks checked"
)endaction
)action in='degree'
)& func='sql'
 say "Using current degree='any', that is: maximum parallelism "
)endaction
The above coding could be written in a member called 'SQLTURBO' in a dataset allocated to file
RXSLIB in the ISPF-session, opening up for this coding in another RXS program:
)imbed imbed='sqlturbo'
)text out='sqlcoding'
 select name, salary from our.employee
)endtext
)action in='sqlcoding'
)& func='sql'
 left(name,20) salary
)endaction
Executing this RXS program will execute the specified select-call against DB2. No locks will be
checked, and - if possible - the DB2 system will split the query in parallel executing parts and thereby
speed up execution. These two options are not programmed, but imbedded.

Variables to govern the imbedded coding may be stated anywhere in the RXS coding in the
main program above the imbedding. To emphasize that some variables are used inside imbed-
ded coding, you may also use the construct:

 Example 31.2
)imbed imbed='createit'
)& object='yrsa'
)& input='r2d2.c.txt(hugo)'
That is, using the notion for stating of general orders to state orders for an imbed.

32. Output: Specific rules

32a. The stdout dataset
If general order out or outfile is not given a value, strings in the RXS program will be writ-
ten to stdout. This dataset has the following characteristics:

• If the RXS program is written in a dataset using COBOL line numbers (that is columns
1 thru 6 numeric and column 7 not numeric) then stdout is created on dataset <us-
er>.RXS.COBOL, where <user> is actual TSO userident. Created lines in stdout
will have COBOL line numbers

RXS Scripting Language Page 56
 november 25, 2021

www.rxs.se

• Exception: When executing RXS as macro (Section 37) output is always created on da-
taset <user>.RXS.DATA and without COBOL line numbers

• If the RXS program is written in a dataset without COBOL line numbers, stdout is cre-
ated on dataset <user>.RXS.DATA

• LRECL for stdout dataset will be 256 bytes - if all records in output are smaller than
256 bytes. Otherwise LRECL will be 32756 bytes. RECFM will be VB. Exception:
RXS.COBOL will have LRECL 80 byte, and RECFM will be FB. Exception two: If
outfunc='sub' LRECL is 80 byte and RECFM=FB.

• Which storage group or unit is used in the allocation of stdout, is determined by param-
eters stated at the installation of RXS.

• The dataset used in stdout is automatically allocated, using the above rules. If a dataset
with the right name and the right DCB parameters exists, it is reused. If not, a new da-
taset is allocated. Any old dataset with the same name but wrong DCB parameters will
be deleted.

32b. General order outfile: changing the name of the stdout dataset
If outfile is assigned a value as general order to an action block or text block, this value will
be used as the middle qualifier of the name of the stdout datset. Example: if
outfile='yrsa' output will be written to the dataset <user>.yrsa.data or <us-
er>.yrsa.cobol according to the rules in Section 32a.
outfile will be inherited to any action or text block contained in the block on which it is
stated. Otherwise outfile is local, and accordingly a RXS program may use different values
for outfile in different blocks.

32c. General order out: state the output dataset or output queue
If out is assigned a value as general order to an action block or text block, and if the value con-
tains at least one period, the value is presumed to be the name of an existing dataset. If the pre-
sumption turns out to be wrong, execution of RXS is terminated in error - unless this exception
is catched by a)notrigger clause. If the presumption is right, output is written to this da-
taset. Record format for the dataset may be FB or VB, and LRECL (logical record length) can
have any value.
If the value of out does not contain a period, the value is interpreted as the name of an internal
queue. Writing on queues is immediate, that is, another action block in the same RXS program
may read the records that are written. Several action blocks in a RXS program may write to the
same queue, this will not overwrite previously written records.
The value for out will be inherited to any action or text block contained in the block on which
it is stated. Otherwise out is local, and accordingly a RXS program may use different values
for out in different blocks. Therefore a RXS program may write any number of datasets and
members.
To replace an inherited value for out by stdout, assign out = "-" in the action block.
If both out and outfile are assigned values for an action or text block, out will work,
outfile will be ignored.
If out contains a file name having last qualifier equal to COBOL then output will be generated
with COBOL numbering, unless the written lines from the RXS program all are numeric in col-
umns 1 thru 6, or all are equal to spaces in columns 1 thru 6.

32d. Writing members
out may point to a member of a partitioned dataset. Example
out='myqualif.mydsn(mymbr)'.

RXS Scripting Language Page 57
 november 25, 2021

www.rxs.se

ISPF-statistics for the member will be updated. As userid in ISPF statistics is assigned 'RXS'. If
the member does not exist, it is created.

32e. Outfunc in a situation with several action blocks or text blocks
outfunc indicates a terminating action when output is created (Section 8).
If outfunc is 'edit', 'browse' or 'view' it will be inherited to any action or text block contained
in the block on which it is stated. Otherwise outfunc is local, and accordingly a RXS program
may use different values for outfunc in different blocks. But notice: two action blocks writing
to the same dataset cannot use two different outfunc. Last stated outfunc will be activated.

32f. Setting global values for stdout
Any RXS program may be put inside a text block by writing)text above the program and
)endtext below. This does not change anything. But by stating general orders to such a text
block, default values for out, outfunc and outfile may be changed for the whole RXS
program.

32g. Commit, rollback: when is writing done?
The physical writing of any output dataset from RXS is postponed to the termination of the
RXS program. Any content in the dataset prior to the execution of the RXS program is overwrit-
ten. More than one action block in a RXS program may write to the same dataset - this will not
overwrite records previously written from other action blocks in RXS. Reading an out dataset
from RXS will read what was initially on the dataset - records just written from RXS cannot be
read until the RXS program has terminated. If the RXS program does not reach commit, initial
content of the dataset is preserved, and nothing is written. The following situations means that a
commit is not reached:

• if the program ends in error
• if the RXS program uses dialogues (using func='prompt') and the user leaves the

program reversing backwards through the first window of the dialogue (according to
seciton21a)

• if the RXS program terminates in a programmed exit or return.

33. Address: Special interpretation of output

33a. Changing address
The RXS general order address='xxx' will change the basic behaviour of RXS: strings are
no longer sent to stdout, but are sent to the environment xxx stated by address.
address is local for an action block.
Default addressing in RXS is therefore address='stdout' meaning that strings are sent to
the environment stdout.
The environment stdout is the normal handler of (sequential) output from RXS. Stdout normally
writes strings created by RXS to the dataset RXS.DATA, but the behaviour of stdout can be
modified - see section 4 and section 7.
Any environment that can be addressed in REXX can be addressed in RXS. Below are some
often used environments for RXS:

RXS Scripting Language Page 58
 november 25, 2021

www.rxs.se

33b. Addressing ISPEXEC
address='ispexec' indicates that all strings from this action block are handled over to
ispexec to be interpreted as orders for ISPF.
If an addressed command gives a return code, RC > 11, then RXS is terminated in error. If the
addressing in this situation is ispexec or isredit then the error message in the addressed system
will be displayed.

Example 33.4:
)action address='ispexec'

"display panel(mypanel) cursor(myfld)"
)endaction
The example uses ISPF for displaying a window. In case of errors in the ISPF display, an ISPF error
message will be shown.

33c. Addressing UNIX
address='unix' will direct strings in the action block to UNIX for execution.
Output from such commands is written to stdout for the action block.
Errors from such commands is written on the screen. Errors will halt the RXS program with RC
= 20

Example 33.5:
)action address='unix'

"cd /home/r2d2/mess"
"cksum myfile.rxs>cksumfile.txt"

)endaction
The example changes the actual directory in UNIX, and executes the UNIX command cksum against a
file on the actual directory.

Example 33.6:
)action address='unix'
)& out='q1'

"ls /home/r2d2/"
)endaction
)action in='q1'
 word.1
)endaction
The example list all files in the directory /home/r2d2/. The listing of the directory will be written on
mvs dataset RXS.DATA

33d. Addressing Java via UNIX
Example 33.7:
Zipping a unix file om manframe:
)action address='unix'
 "cd /main_dir/our_dir/ "
 "jar cfv hovsa.zip r2d2.txt "
)endaction
The example zips the file /main_dir/our_dir/r2d2.txt to the zip-archive hovsa.zip which is created on
the same directory. More than one file may be zipped:
 "jar cfv hovsa.zip yrsa.txt r2d2.txt "

Example 33.8:
UNZIP a zip.archive to a unix file om manframe:
)action address='unix'
 "cd /main_dir/our_dir/ "
 "jar xfv hovsa.zip "
)endaction

RXS Scripting Language Page 59
 november 25, 2021

www.rxs.se

The original file(s) are extracted from the zip-archive hovsa.zip on the directory /main_dir/our_dir. The
file(s) are placed on the same directory

33e. Addressing TSO
address='tso' will direct strings in the action block over to tso for execution.
Output from such commands is is written to stdout for the action block.
If a tso command sets a return code 8 or more, the RXS program is halted.

33f. Communicating to a remote system by FTP
Getting an unix-file from remote:

Example 33.9:
)action address='tso'

queue "R2D2"
queue "is_secrt"
queue "binary"
queue "lcd /home/R2D2"
queue "cd /home/Stranger"
queue "get lyrics.txt (replace "
queue "quit"
"FTP EXMACHINE.REMOTE.COM"

)endaction
The example performs an FTP transport of unit-file lyrics.txt from unix-directory home/stranger on
EXMACHINE.REMOTE.COM over to /home/R2D2 on the local mainframe. User R2D2 with password
is_secrt is authenticating the transport.
Note the use of instruction 'queue' to set op a list of answers to the questions we know that the FTP
tso command is going to ask.

Putting a member from a MVS partitioned dataset or library to remote:
Example 33.10:
)action

queue "R2D2"
queue "is_secrt"
queue "lcd 'ourqual.ourlib.cntl'
queue "cd 'remqual.theirlib.cntl'"
queue "put killroy "
queue "quit"
)action address='tso'
)& out='ftp_mess'

"FTP EXMACHINE.REMOTE.COM"
)endaction

)endaction
)action in='ftp_mess'
)& errorc=1

select
when word.1 = 'EZA2644I' then do

errorc = 2
say substr(unit.1,9)

end
when word.1 = 'EZA2836I' then do

say substr(unit.1,9)
errorc = 2

end
when word.1 = 'EZA1684W' then do

say substr(unit.1,9)
errorc = 2

end
when word.1 = 'EZA1617I' then do

say substr(unit.1,9)

RXS Scripting Language Page 60
 november 25, 2021

www.rxs.se

errorc = ''
end
otherwise nop

end
)endaction
)action

select
when errorc = 2 then do

say 'FTP fails'
exit 16

end
when errorc = 1 then do

say 'FTP fails. Probably wrong password on extern, or',
'wrong filename on extern'
exit 16

end
otherwise say 'FTP was a success'

end
)endaction

The example performs an FTP transport of member 'killroy' from dataset 'remqual.theirlib.cntl' on ex-
ternal mainframe EXMCHINE.REMOTE.COM . The data will be recived on 'ourqual.ourlib.cntl(killroy)'.
User R2D2 with password is_secrt is authenticating the transport.
Note the use of instruction 'queue' to set op a list of answers to the questions we know that the FTP
tso command is going to ask.
The RXS program performs an analysis on the output from FTP to verify whether the transfer suc-
ceeded.

34. Scope of variables
The only pre-processing phase in the execution of a RXS program is a scan through the program
to find all user defined variables:
All user-defined variables are made global, that is, all action blocks share a common definition
of the data. A variable is user defined if the variable exists in the RXS coding and if the variable
is not a general order or output from a general order.
Output variables word.x and unit.x and variables carrying output from 'sql',
'namespace' and 'prompt' input, plus variables created in imbedded coding, are visible
'downwards' in the RXS program: The variables are visible in the action block where they are
created plus all action blocks contained in - or imbedded in - this action block. But do notice
that word.x and unit.x are given new content whenever a new action block using default
func is entered during execution of the RXS program.
Variables created in an ISPF panel or created dynamically using the REXX interpret com-
mand are local. If such a variable is referenced in the RXS codning, no problem, the variable is
global. But if the variable is dynamically named and therefore indirectly referenced in the RXS
coding, the variable remains local. The problem also occurs if dynamically created variables are
used in an prompt in RXS.
Using the RXS instruction
make_global 'varname'
to make such a variable visible in other action blocks. This instruction must be issued before
any reference of the variable, and before any reference in an ISPF panel.

Example 34.1
Using dynamically named variables in RXS:
)action

RXS Scripting Language Page 61
 november 25, 2021

www.rxs.se

do ix = 1 to 20
 make_global 'ourvar'ix
end

)action address='tso'
 "display panel(ourpan)" /* having input fields for ourvar1,
ourvar2, etc */

)endaction
)action

 do ix = 1 to 20
 stmt = 'say ourvar'ix
 interpret stmt
)endaction

)endaction
The variables ourbar1, ourvar2, etc are never explicitly mentioned in the RXS coding, therefore the
first action block has to issue an 'make_global' to make the RXS coding work

RXS queues are always global.
General orders out, outfunc, outfile are local for the action block or text block at
which they are stated, and are visible in blocks contained in - or imbedded in - this action block.
Remaining general orders in, func, prompt, imbed, caps etc., are local for the
action block.

Example 34.2
If a general order is to receive an assignment prior to the execution of the action block, this can be
accomplished using a user defined variable. All user defined variables are global.
This example uses variable w_outfunc to transport an assignment into the inner action block:
)action

w_outfunc = word('browse view', random(1, 2))
)action outfunc=w_outfunc

"What's up doc?"
)endaction

)endaction
About half the times this program is executed, the user will end in browse on output, about half the
time in view.

The reason for these rather uneven principles is the possible use of RXS for code generation. A
COBOL program using RXS code generation normally consists of separate islands of RXS
code, separated by sequences of normal COBOL code ('dead code' as seen from the RXS pro-
gram). This is because you do not generate the whole COBOL coding; but only the parts of the
program that is to reflect some specification file. These separate islands of RXS code must be
able to communicate, therefore the use of global variables. A schema of clean inheritance of
variables will not do.

34a. 'Signal on novalue'
A variable in RXS is not to be referenced before it is assigned a value. Violating this rule will
cause the program to end in error.
This strict rule helps finding typing errors in the program. It also helps finding errors caused by
referencing the variable in an action block outside the variable's scope.

Example 33.3:
When writing:
)action

do 5
if x = 'x' then x = 0
x = x + 1
say x

end

RXS Scripting Language Page 62
 november 25, 2021

www.rxs.se

)endaction
the RXS program will end in error, giving an error message in line 3: "x has no value".
To see if a variable has a value or not, use the following logic:
)action

if symbol('x') = 'LIT' then do
say 'x does not contain a value'

end
)endaction
Notice: the variable name x used in symbol is quoted - elsewhere we would find ourselves back in
the tarpit again, with the program making an immediate end saying "x has no value".

35. Execution RXS as TSO commands and from REXX
a) Handling RXS programs located in allocated libraries:
RXS programs can be be executed as TSO commands if they reside in an allocated library: The
TSO session must allocate the file RXSLIB, pointing to one or more partitioned datasets con-
taining the RXS programs. Such a dataset may have any attributes, but RECFM=VB and
LRECL=255 is recommended.

• A RXS program may be executed from any command line in ISPF by writing:
tso rxs myrxs
provided that the RXS program myrxs resides in the RXSLIB library.

• The RXS program may use parameters:
tso rxs myrxs what's up doc?
(Section 03)

• If the program terminates in error, the error message plus line number for the error will
be written on screen. TSO will receive return code RC=8.

• Any other return code may be given in a programmed exit. If you program:
exit 20
in the RXS program, the program will terminate in error, and TSO will receive return
code RC=20.

A RXS program can be executed from a REXX program:
Example 35.1
/* REXX */
XVAR = 'Killroy was here'
ADDRESS TSO
"RXS YRSA "XVAR
IF RC > 5 THEN DO
 SAY "'YRSA' set a return code" RC
END
The example calls an RXS named YRSA. YRSA resides in an library allocated to RXSLIB in the tso
session. YRSA will receive the string 'Killroy was here' in its variabel RXSPARM. The REXX program
will receive a RC = nn if the RXS programs issues an EXIT nn.

b) Handling RXS programs located anywhere:
A RXS program may be executed from any commando line in ISPF by writing:

tso rxs 'ourgroup.ourlib.type(myrxs)'
That is, naming file and member name in normal ISPF syntax.
Executing a RXS program this way changes the behaviour of)IMBED: the search for imbed'ed
RXS program is done solely in the indicated dataset

RXS Scripting Language Page 63
 november 25, 2021

www.rxs.se

Naming both dataset and member is relevant when executiong a RXS program from a REXX
program:

Example 35.2
/* REXX */
XVAR = 'Killroy was here'
ADDRESS TSO
"RXS 'OURGROUP.OURLIB.RXS(YRSA)' "XVAR
IF RC > 5 THEN DO
 SAY "'YRSA' set a return code" RC
END

Calling RXS this way, the call will function regardless of the allocations for the ISPF session.

c) Handling RXS programs when shown in an extended member-list:
Writing RXS in the command field of a member list will execute the indicated member as a
RXS program.

36. Execution in background (JCL)
To execute an RXS program in the background, make the following allocations in JCL:

• DD name //SYSPROC must point to a library containing the REXX program RXS
• DD name //ISPLLIB must point to a library containing the load module RXSDO
• Remaining DD names for the execution of ISPF in the background must be found in

the JCL (//ISPPROF, //ISPPLIB, //ISPSLIB, //ISPMLIB and
//ISPTLIB). Allocate //ISPPROF as in the example below, and use the alloca-
tions normally used at your installation for the other DD names.

• DD name //SYSTSIN must contain the string:
ISPSTART CMD(RXS)

• DD-name //RXSPGM must point to a dataset or member containg the program to
be executed. Alternatively the program is stated inline as in the example below.

• If general order out is given a value in the RXS program, this will function as usu-
al: if the dataset exists, RXS will write to it. No JCL allocation of the dataset is
needed.

• If the RXS program writes to standard output, stdout, writing will take place in DD
name //RXS. If no such DD name exists in the JCL, RXS will allocate a dataset
according to its normal rules (section 32a).

• If general order outfile is used in the RXS program, writing will take place in a
file having this same name in the JCL. Example: If an action block writes to
outfile='yrsa', then DD name //YRSA will be used in the writing. If no
such DD name exists in JCL, RXS will allocate a dataset according to its normal
rules (section 32a).

• If general order infile is used in the RXS program, reading will take place
from a file having this same name in the JCL

• If general order func='prompt'is used in the RXS program, DD name
//PROMPT must be found in the JCL. Assignments for the variables in the prompt
must be stated under this DD name - one assignment per line. The syntax
variablename(assignment) must be used (See Example 36.2)

• If general order prompt='xyz' is used in the RXS program, the DD name
//XYZ must be found in the JCL. Assignments for the variables in the prompt must
be stated under this DD name - one assignment per line. The syntax
variablename(assignment) must be used

RXS Scripting Language Page 64
 november 25, 2021

www.rxs.se

• If)imbed is used, DD name //RXSLIB must point to a library (partitioned da-
taset) containing the RXS coding parts to be imbedded

• Error messages from RXS are written to DD name //SYSTSPRT. The RXS step in
error is terminated with return code RC=16. The job also will terminate. A message
on screen notify the user that //SYSTSPRT should be checked

• A programmed exit is propagated up to the background job: When programming,
say, exit 12 in RXS, the step in the background job will terminate with return
code RC=12. Programming exit 16 in RXS will terminate the background job
too

Example 36.1:
//PROFALL EXEC PGM=IEFBR14
//PROFDSN DD DSN=&&PROFIL,DISP=(NEW,PASS),UNIT=VIO,
// DCB=(BLKSIZE=6080,LRECL=80,RECFM=FB,DSORG=PO),
// SPACE=(TRK,(1,1,1))
//*
//RXSSTEP EXEC PGM=IKJEFT1B,DYNAMNBR=30
//SYSPROC DD DSN=MYQUALIF.MYPROC,DISP=SHR
//ISPPROF DD DSN=&&PROFIL,DISP=OLD,UNIT=SYSDA
//ISPLLIB DD DSN=??.ADCYCLE.LE370.SCEERUN,DISP=SHR
// DD DSN=MYQUALIF.ISPLLIB,DISP=SHR
//ISPTLIB DD DSN=??
//ISPMLIB DD DSN=??
//ISPSLIB DD DSN=??
//ISPPLIB DD DSN=??
//ISPLOG DD DUMMY
//SYSTSPRT DD SYSOUT=T
//SYSTSIN DD *
 ISPSTART CMD(RXS)
//RXSPGM DD *
)action

nbr = random()
'Square of 'nbr' is 'nbr**2

)endaction
//RXSLIB DD DSN=MYQUALIF.RXSLIB,DISP=SHR
//RXS DD DSN=MYQUALIF.MY.OUTPUT,DISP=(NEW,...

Submitting this JCL will create the dataset MYQUALIF.MY.OUTPUT consisting one line:
Square of 117 is 13689
or whatever the random number is.

//ISPMLIB and //ISPSLIB is not used by RXS, but they are needed to start ISPF in the
background
In RXS everything will function normally, except:

• outfunc = 'edit' or 'browse' or 'view' is ignored
• The command say writes to //SYSTSPRT - not to the screen.

A debugging tip: Marking the RXS program in the JCL above using line commands 'cc' 'cc'
and entering ==> rxs in the command prompt, will execute the RXS program directly.
Warning:
 '/*' in column 1 in JCL unfortunately marks the end of a SYSIN-dataset. Therefore, comments
in the RXS program having /* in column 1 will terminate the reading of the program.

Example 36.2:

RXS Scripting Language Page 65
 november 25, 2021

www.rxs.se

Execution of the RXS-program 'myrxs' from JCL. The program resides as a member on the dataset
MYQUALIF.RXSLIB. The program 'myrxs' uses an action block using func='prompt' to get values
for account and department. ('myrxs' could be the RXS program in example 21.3).
//PROFALL EXEC PGM=IEFBR14
//PROFDSN DD DSN=&&PROFIL,DISP=(NEW,PASS),UNIT=VIO,
// DCB=(BLKSIZE=6080,LRECL=80,RECFM=FB,DSORG=PO),
// SPACE=(TRK,(1,1,1))
//*
//RXSSTEP EXEC PGM=IKJEFT1B,DYNAMNBR=30
//SYSPROC DD DSN=MYQUALIF.MYPROC,DISP=SHR
//ISPPROF DD DSN=&&PROFIL,DISP=OLD,UNIT=SYSDA
//ISPLLIB DD DSN=MYQUALIF.ISPLLIB,DISP=SHR
//ISPTLIB DD DSN=??
//ISPMLIB DD DSN=??
//ISPSLIB DD DSN=??
//ISPPLIB DD DSN=??
//ISPLOG DD DUMMY
//SYSTSPRT DD SYSOUT=T
//SYSTSIN DD *
 ISPSTART CMD(RXS MYRXS)
//RXSLIB DD DSN=MYQUALIF.RXSLIB,DISP=SHR
//RXS DD DSN=MYQUALIF.MY.OUTPUT,DISP=(NEW,...
//PROMPT DD *
ACCOUNT(1448)
DEPARTMENT(SALES)

This last example is omitting //RXSPGM and pointing //SYSTSIN to
ISPSTART CMD(RXS MYRXS)
This way RXS programs using parm-strings may be executed in background:
ISPSTART CMD(RXS OURRXS what's up doc?)
will execute the command OURRXS using parameter what's up doc?

Example 36.3
Building a JCL-procedure:
Due to an error in ISPF, running multiple instances of RXS in background will collide when using
//ISPTLIB. The solution is this modificated JCL:This is the way to build a JCL procedure for back-
ground execution of RXS:
//COPYTLIB EXEC PGM=IEBCOPY
//SYSUT1 DD DSN=SYS2.DCISPF.ISPTLIB,DISP=SHR
//SYSUT2 DD DSN=&&ISPTLIB,DISP=(NEW,PASS),UNIT=VIO,
// DCB=(BLKSIZE=6080,LRECL=80,RECFM=FB,DSORG=PO),
// SPACE=(TRK,(3,3,3))
//SYSPRINT DD SYSOUT=T
//SYSIN DD *
COPY OUTDD=SYSUT2,INDD=SYSUT1
SELECT MEMBER=(ISPCMDS,ISPFCMDS,ISPKEYS,ISPPROF,ISPSPROF)
//*
//RXSBAGAL EXEC PGM=IEFBR14
//DSN1 DD DSN=&&PROFIL,DISP=(NEW,PASS),UNIT=VIO,
// DCB=(BLKSIZE=6080,LRECL=80,RECFM=FB,DSORG=PO),
// SPACE=(TRK,(1,1,1))
//*
//RXSDO EXEC PGM=IKJEFT1B,DYNAMNBR=30
//SYSPROC DD DSN=SDBNYSL.PROJ.CLIST,DISP=SHR
//ISPPROF DD DSN=*.RXSBAGAL.DSN1,DISP=OLD
//ISPMLIB DD DSN=SYS2.DCISPF.ISPMLIB,DISP=SHR
//ISPSLIB DD DSN=SYS2.DCISPF.ISPSLIB,DISP=SHR
//ISPPLIB DD DSN=SYS2.DCISPF.ISPPLIB,DISP=SHR
//ISPLLIB DD DSN=SYS2.ADCYCLE.LE370.SCEERUN,DISP=SHR

RXS Scripting Language Page 66
 november 25, 2021

www.rxs.se

//ISPLLIB DD DSN=SDBISPF.BSPF.LOAD,DISP=SHR
//ISPTLIB DD DSN=&&ISPTLIB,DISP=SHR
//ISPLOG DD DUMMY
//RXSLIB DD DSN=SDBNYSL.PROJ.RXSLIB,DISP=SHR
//SYSTSIN DD *
ISPSTART CMD(RXS)
//SYSTSPRT DD SYSOUT=T
//SYSUDUMP DD SYSOUT=T
//RXSPGM is to be added when calling the JCL procedure.

Notice: handling large data structures in RXS consumes large amounts of memory. Using
REGION=0K in the JOB-card is recommended, as it will maximise the possible amount of high
memory.

37. Writing ISPF edit macros
Consider the following situation: When editing a dataset in ISPF-edit, you want to execute the
RXS program myrxs. Myrxs exists on the ISPRLIB library in the TSO session.
Writing in the command line:
==> tso rxs myrxs
and pressing enter, the program myrxs is executed
Writing
==> rxs |myrxs
and pressing enter, the program myrxs is executed too. Execution this way opens the following
possibilities in myrxs:
In the program you may read the queue edit_screen. This queue contains all lines in the
edit dataset on the screen - in the state as currently seen on the screen. COBOL line numbers are
ignored; linie-numbers in col 73-80 are ignored if record-length is 80.
The following special situations exists:

• If a block of lines on the edit screen has been marked using line commands 'cc' marking
start and end of the block, edit_screen will only contain the lines in the marked
block.

• If a line command a or b is stated somewhere on the edit screen, it will have these ef-
fects:

o the queue edit_screen will by empty
o stdout will write on the screen after or before the stated position, unless out or

outfile is specified
• If the edit screen is empty, it will have these effects:

o the queue edit_screen will by empty
o stdout will write on the screen, unless out or outfile is specified

• Otherwise, stdout will function as normal
Format and blocksize for the stdout dataset will be copied from the dataset underlying the edit
session
Due to an oddity in REXX (that is in fact, an oddity in EBCDIC) the | above is to be replaced by
an ! when using a keyboard from a nordic country, France, Germany, Austria and Italy

Example 37.1: myrxs contains:
)action in='edit_screen'
)& start=1

if start = 1 then do
xx = change('yrsa', 'hugo', unit.1, 'first')
xx

RXS Scripting Language Page 67
 november 25, 2021

www.rxs.se

if xx <> unit.1 then start = 0 /* if a change has occured */
end
else do

unit.1
end

)endaction
If command ==> rxs |myrxs is fired, the first occurence of the string 'yrsa' is changed to 'hugo'. The
changed dataset is written to <userid>.rxs.data

Example 37.2: myrxs contains:
)action in='edit_screen'
)& func='sql'

sqlvalues
)endaction
If the edit screen contains some SQL, writing ==> rxs |myrxs will execute this SQL. If the exe-
cution creates output, the rows will be shown in a new edit screen.

Example 37.3
)action in='ourqualif.ourdsn' /* a partitioned dataset */
)& out='q1'
 mbr = unit.1

"edit dataset('ourqualif.ourdsn("mbr")') macro(mymacro)"
)action in='q1'
)& address='ispexec'

unit.1
)endaction
dropqueue('q1')

)endaction
ISPF macro 'mymacro' is executed on all members in dataset 'ourqualif.ourdsn'.
'Mymacro' could be:
/* REXX */
address isredit
"macro"
"change 'yrsa' 'hugo' first"
"end"
Resulting in a change of 'yrsa' to 'hugo' in first occurence in each member.'Mymacro' must be a
member on a dataset allocated to SYSPROC in the ISPF session.

Example 37.4
)action in='edit_screen'
)& cnt=0

if pos(' IF ', unit.1) > 0 then do
 cnt = cnt + 1
 cnt unit.1
end
if pos('END-IF', unit.1) > 0 then do

cnt = cnt - 1
cnt unit.1

end
if pos('SECTION', unit.1) > 0 then do

unit.1
end

)endaction
This coding will trace any un-balance in IF / END-IF in a COBOL program.

RXS Scripting Language Page 68
 november 25, 2021

www.rxs.se

38. Reserved names
All variable names starting with the three characters rx_ are reserved for internal use in RXS.
Failure is raised if such a name is used in a RXS program.
If RXS uses DB2, the IBM DB2 REXX interface is active. This interface reserves the following
names for internal use: All names starting with SQL, RDI, DSN, RXSQL and QRW, plus names
C1 to C100. The reservation applies only to the action block which uses func='sql'. No
problem using these names is ever reported, and accordingly RXS raises no failure if they are
used.
The variable names mentioned in this paper as being general orders and mentioned for being
variables for communicating the result of general orders, of course are reserved: they have a
special meaning in the context in which they are used. Otherwise, they are not reserved. For
instance, if an action block does not access MQSeries, the variable named mq is not reserved.
The only variable in RXS that have its special meaning in every context is cont. Accordingly
cont cannot be used for any other purpose.
Syntactically reserved words like if, else, return may - but should not - be used as varia-
ble names. The same applies to all function and instruction names.
The index of 'RXS documentation' (the PDF-document) contains references to all variables with
special meaning in RXS.

39.)interface
)interface halts the RXS program and starts an edit-session (or browse session) on the indi-
cated internal RXS queue. When the user presses F3 (end) in the edit-session, the RXS program
is resumed.
in
General order in names the internal RXS queue to be presented in the ISPF-editor in the user
interface. The queue may or may not exist prior to beeing presented in)interface. If the
queue does not exist, the user will be shown an empty edit screen.
)interface is a way of getting complex input from the user. This might for instance be used
in a RXS programming of an editor for some special resources: a MQ-queue, a SQL-table etc.
)interface may also be used for debugging by showing the content of internal queues during
the execution of the RXS program.
If a queue contains both unit.1 and unit.2, then)interface will in browse, not edit, show
both elements of the queue, separated by ##.

interface(q_name)
The function interface(q_name) using a queue-name as its argument, returns '1' if the indi-
cated queue q_name has been changed by the user in an)interface session in the current
RXS program.

Example 39.1
)action in='ourgrp.thisque'
)& func='mqdrain'
)& out='q1'
 unit.1
)endaction
)interface in='q1'
)action in='q1'
)& outfunc='mqput'
)& out='ourgrp.thisqueue'

RXS Scripting Language Page 69
 november 25, 2021

www.rxs.se

 unit.1
)endaction
This is a very primitive editor for a MQSeries queue. 'ourgrp.thisque' is a MQSeries queue. The mes-
sages of the queue is presented in an edit-session, one line per message, and the user may alter, de-
lete or add messages. When pressing F3, these messages are written back to the MQSeries queue.

40. Functions and instructions in RXS
The definition of the two terms in the heading just above is:

• A function replaces itself with the value it creates.
• An instruction is an executable line in RXS.

The notation in this appendix is:
Syntax is described using typeset courier. Required elements are bold, optional are not
bold. If an optional element is omitted, the comma in front of it is to be omitted too.
Elements written using UPPER CASE must be written exactly as stated here (you may use lower
case), elements written using lower case must be replaced by a string or a variable contain-
ing a value.
Do notice: non-numeric strings in RXS must always be written in quotes.
If nothing is noted below, the concept is a function, and its heritage is REXX. Which means that
further information can be found in a REXX manual.
Functions in RXS can be nested - for instance left(date(),2) will create a two digit string
containing the current day in the month.
The list below is not exhaustive - any REXX functions and instructions may be used in RXS,
except those mentioned in Section 2.

ABS(number)
ABS returns the absolute value of a number (stripping of the sign, returning a positive number
or zero)
BITAND(string1,string2,pad)
BITAND returns a string containing the two input strings ANDed together bit for bit.
BITOR(string1,string2,pad)
BITOR returns a string containing the two input strings logically ORed together bit for bit.
BITXOR (string1,string2,pad)
BITXOR returns a string containing the two input strings logically exclusive ORed together bit
for bit.
B2X(binary_string)
Binary to hexadecimal - returns a string in character format, representing binary_string convert-
ed to hexadecimal.
CALL extprocedure parameter
The external REXX or CLIST program extprocedure is executed, optionally using the parame-
ter parameter. (REXX instruction)
CENTER(string,length,pad)
CENTER returns a string of length length containing string centered inside it. pad characters
may be added to reach the length.
CHANGE(oldval,newval,string,option)
CHANGE returns a string in which first, last or all occurences of another string, oldval is
changed to the string newval. Option is F(irst) L(ast) or A(ll). A is default. (RXS function)
COMPARE(string1,string2,pad)
COMPARE compares string1 and string2. COMPARE returns 0 if the strings are identical. If
the strings differ, the position of the first character not in match is returned.

RXS Scripting Language Page 70
 november 25, 2021

www.rxs.se

COPIES(string,n)
COPIES returns n concatenated copies of string.
C2D(string,n)
Character to decimal - returns the decimal value of the binary representation of string. This
function converts an IBM 'binary' field to a REXX numeric - for example, if string contains
'05A8'x, the REXX numeric '1448' is created.
C2X(string)
Character to hexadecimal - converts a string to its hexadecimal representation. This function
conterts an IBM 'packed decimal' to a REXX numeric - for example, if string contains
'01448D'x, the REXX string '01448D' is created. If the last character is 'D' then multiply by -1.
Remove last character.
DATATYPE(string,type)
DATATYPE returns - when only string is specified - NUM if string is a valid REXX number.
Otherwise CHAR is returned. If type is specified, 1 is returned if string matches type, otherwise
0 is returned.
DATE(option)
DATE returns the actual date in the format dd mmm yyyy (if option is omitted) or in the format
according to option. Option can be Base, Century, Days (number of day inside year), European
(the format 13/03/92) , Julian, Month, Normal (the format 13 Mar 1992), Ordered, Standard (the
format 19920313), Usa, Weekday (the day of the week in letters). Only the first letter of option
has to be written.
DELSTR(string,n,length)
DELSTR deletes the substring of string starting at the n'th character and being length long.
DELWORD(string,n,length)
DELWORD deletes the substring of string starting in the n'th word, being length blank-
delimited words long.
DO
Lines in RXS contained inside lines DO and END are considered a block of lines (section 2a)
(REXX instruction)
DROPQUEUE queue
DROPQUEUE removes the queue queue. (See Section 16). (RXS instruction).
DROP name
DROP restores variables to their original uninitialized state. If name is not enclosed in parenthe-
ses, it identifies a variable to drop. If a single name is enclosed in parentheses, then the value of
name denotes a subsidiary list of variables to drop. (REXX instruction)
D2C(wholenumber,n)
Decimal to character - returns a character-string being the binary representation of the decimal
number wholenumber.
D2X(wholenumber,n)
Decimal to hexadecimal - returns a character-string being the hexadecimal representation of the
decimal number wholenumber.
END
Lines in RXS contained inside lines DO and END are considered a block of lines (section 2a)
(REXX instruction)
EXIT number
The RXS program is halted immediate. If number is written the environment of the RXS pro-
gram will receive number as return-code (normally in the variable RC). Any updates from the
RXS program (DB2, MQ, and writing of files) will be rolled back. If the RXS program is exe-
cuted directly from an edit-screen or as a command, an informative message is written. (RXS
instruction)
FIND(string,phrase)

RXS Scripting Language Page 71
 november 25, 2021

www.rxs.se

FIND searches string to find first appearance of phrase (where phrase is a string of blank-
delimited words), returning the number of the word in string where the appearance starts. If
phrase is not found, or phrase is empty, 0 is returned.
FORMAT(number,before,after,expp,expt)
FORMAT rounds and format number according to the stated: Before states the number of digits
before the decimal separator, after states the number of digits after the decimal separator.
FROMISPF(dsname)
Converting a dsname from ISPF naming standard to RXS naming standard: If dsname begins
with a quote, qutoes before and after is removed. If no quote is found, dsname is prefixed
USERID()".". (RXS function).
GETQUEUE(queue_name, element_value)
GETQUEUE returns the value of unit.2 in the queue queue_name for the entry having unit.1 =
element_value (See Section 15). (RXS function)
INDEX(haystack,needle,start)
INDEX returns the position of a string, needle, in another string haystack, starting the examina-
tion at start. If the string needle is not found, 0 is returned.
INSERT(new,target,n,length,pad)
INSERT inserts the string new, padded up to length length, into the string target starting at
character n.
INTERPRET expression
INTERPRET executes expression: a string or a variable containing a valid statement in REXX
syntax, or several valid statements, separated by ";". Example: interpret "if w = 14
then do;w = w - 1;end" Notice that RXS constructs is not allowed inside expression.
(REXX instruction)
INTERFACE(in)
The function INTERFACE() using a queue-name in as argument, returns '1' if the indicated
queue in has been changed by the user during an edit session using an)interface in the
current RXS program (RXS function)
ITERATE
Jump to the beginning of the current block of coding (DO END block) and execute from here.
(REXX instruction)
JUSTIFY(string,length,pad)
JUSTIFY formats blank-delimited words in string by adding pad characters between the words
so that the words fill out length.
LASTPOS(needle,haystack,start)
LASTPOS returns the last position of a string, needle, in another string haystack, starting the
examination at start. If needle is empty or if needle is not found inside haystack, 0 is returned.
LEAVE
Jump past the end of the current block of coding (DO END block) and execute from here
(REXX instruction).
LEFT(string,length,pad)
LEFT returns a string containing characters from the left of string up to length length.
LENGTH(string)
LENGTH returns the length of string.
MAKE_GLOBAL varname
The variable with the name varname is made globally accessible. See Section 33. (RXS instruc-
tion)
MAX(number1,number2,...)
MAX returns the largest number in the list
MIN(number1,number2,...)
MIN returns the smallest number in the list.

RXS Scripting Language Page 72
 november 25, 2021

www.rxs.se

NOP
Dummy instruction with no effect. (REXX instruction)
OVERLAY(new,target,n,length,pad)
OVERLAY overlays tartget - starting at the n'th character - with the string new, padded and
truncated to length length.
PARSE VAR string varname1 "," varname2 "," varname3
PARSE comes in a lot of flavors. The above form splits a string into three strings. The split
occurs when the character ',' is found in string. For other uses of PARSE, see a REXX manual
POS(needle,haystack,start)
POS returns the first position of a string, needle, in another string haystack. The examination
starts at position start.
QUEUE string
Concatenate string at buttom of the current queue. The current queue is normally used to hold
sub-commands for tso commands using several sub-commands, like FTP (REXX instruction)
(section 33j)
QUEUEVAR(queue_name, queue_element)
Queuevar returns 1 if queue_element is found in the queue queue_name, otherwise 0 is returned
(See Section 14). (RXS function)
RANDOM(min,max,seed)
RANDOM returns a pseudo random non-negative number in the sequence from min to max
inclusive. The difference between min and max may not exceed 100000. A specific seed for the
generation may be given.
REVERSE(string)
REVERSE returns the bytes of string in reverse order.
RETURN
If the RXS program contains a series of prompts (Section 21) the first prompt will re-appear.
Otherwise: The RXS program is halted immediate. Any updates from the RXS program (DB2,
MQ, and writing of files) will be rolled back. (RXS instruction)
RIGHT(string,length,pad)
RIGHT returns a string of length length, including the rightmost character of string
SAY expression
expression is written on screen (REXX instruction)
SET_HALT string
string is presented as a message on the current screen presented to the user, and the execution is
temporarely halted - the current screen in a prompt is re-displayed. (RXS instruction).
SET_MESSAGE string
string is presented as a message on the next screen presented to the user. (RXS instruction).
SIGN(number)
If number is negative, -1 is returned, if number is zero, 0 is returned, otherwise 1 is returned.
SPACE(string,n,pad)
SPACE formats blank-delimited words in string using n pad characters between each word. If n
is zero, all blanks are removed.
STRIP(string,option,char)
STRIP removes Leading, Trailing or Both char from string, according to option being
L(eading), T(railing) or B(oth). Default is B. Default for char is space.
SUBSTR(string,n,length,pad)
SUBSTR returns the substring af string starting at the n'th character. If length is omitted, the
rest of the string is returned.
SUBWORD(string,n,length)
SUBWORD returns the substring of string starting at the n'th word, and being length long.
SYMBOL(name)

RXS Scripting Language Page 73
 november 25, 2021

www.rxs.se

If name is not a valid REXX symbol, BAD is returned. If name is the name of a variable, VAR
is returned. Otherwise LIT is returned.
TIME(option)
TIME returns local time in the format '14:19:03' if option is not stated. Option is: Civil '2:19pm',
Elapsed '0.000028' (number of seconds after reset), Hours '14' (number of hours since mid-
night), Long'14:09:03.050683', Minutes '859' (minutes since midnight), Normal '14:09:03', Re-
set (that is: resetting elapsed) and Seconds '51535' (Seconds since midnight). As option you
may state the first letter, for instance 'c' for 'civil'.
TIMESTAMP()
TIMESTAMP returns the current timestamp in DB2-format:
yyyy-mm-dd-hh.mm.ss.mmmmmm
(RXS function)
TRANSLATE(string,tableo,tablei,pad)
TRANSLATE 'translates' the characters of string to other characters. If tableo and tablei is not
stated, the string is translated to upper case.
TRUNC(number,n)
TRUNC returns the integer part of number and - if stated - n decimal places.
USERID()
Returns tso-userident
VALUE(name,newvalue)
VALUE returns the value that has been assigned to a variable name, and optionally assigns a
new value newvalue to the variable name.
VERIFY(string,reference,option,start)
VERIFY verifies that string only contains characters from reference. If true, 0 is returned. If not
true, the position of first character in string that is not in reference is returned. If option is 'no-
match', the function is reversed: it returns the position of the first character in string that is in
reference. If start is stated, the examination starts at start.
WORD(string,n)
WORD returns the n'th blank-delimited word in string.
WORDINDEX(string,n)
WORDINDEX returns the position of the first character in the n'th blank-delimited word in
string.
WORDLENGTH(string,n)
WORDLENGTH returns the length of the n'th blank delimited word in string.
WORDPOS(phrase,string,start)
WORDPOS searches string for the first occurrence of the sequence of blank-delimited words,
phrase in string. The words in both strings may be separated by any number of blanks. If phrase
is not found in string, 0 is returned.
WORDS(string)
WORDS returns the number of blank-delimited words in string.
X2B(hexstring)
Hexadecimal to binary - returns a string in character format representing hexstring binary.
X2C(hexstring)
Hexadecimal to character - converts a string of hexadecimal characters to character format.
X2D(hexstring,n)
Hexadecimal to decimal - converts a string of hexadeical characters to decimal

RXS Scripting Language Page 74
 november 25, 2021

www.rxs.se

Index
!!; 18
)&; 18
)endtext; 28
)imbed; 54
)interface; 68
)nop; 17
)notrigger; 25
)text; 28
)trigger; 25
|; 66
ABS; 69
address; 57
address tso; 59
address unix; 58
address='mqput'; 51
B2X; 69
BITAND; 69
BITOR; 69
BITXOR; 69
C2D; 70
C2X; 70
CALL; 69
call; 54
caps; 39
CENTER; 69
CHANGE; 69
change; 66
CICS; 33; 34
COMPARE; 69
concatenation operator; 17
cont; 26
COPIES; 70
D2C; 70
D2X; 70
dataname; 43
DATATYPE; 70
datatype; 43
DATE; 70
DB2 stored-procedure; 33
decimals; 43
DELSTR; 70
DELWORD; 70
DO; 70
do; 12
DROP; 70
DROPQUEUE; 70

dropqueue; 28
edit_screen; 66
else; 12
END; 70
end; 12
EXIT; 70
exit; 15
FIND; 70
forever; 12
FORMAT; 71
FROMISPF; 71
ftp; 59; 60
func='<ascii'; 53
func='<utf8'; 53
func='>ascii'; 53
func='>utf8'; 53
func='binary'; 52
func='dcl'; 43
func='mqbrowse'; 50
func='mqdrainkey'; 51
func='namespace'; 44
func='prompt'; 35
func='sorted_desc'; 50
func='sorted'; 49
func='sql'; 30
func='xml'; 46
Generic file name; 23
GETQUEUE; 71
getqueue; 27
imbed; 54
IMS; 33; 34
in; 21
INDEX; 71
INSERT; 71
insql; 30
INTERFACE(); 68; 71
INTERPRET; 71
ITERATE; 71
iterate; 12
JCL; 63
JCL procedure; 65
JUSTIFY; 71
LASTPOS; 71
LEAVE; 71
leave; 12
LEFT; 71

RXS Scripting Language Page 75
 november 25, 2021

www.rxs.se

LENGTH; 71
length; 43
MAKE_GLOBAL; 71
make_global; 60
MAX; 71
Member list; 23
MIN; 71
mq_backout; 50
mq_messid; 51
NOP; 72
nulls; 43
otherwise; 12
out; 19; 56
outfile; 19; 56
outfunc; 57
outfunc='binary'; 52
outfunc='browse'; 20
outfunc='edit'; 20
outfunc='mqput'; 20
outfunc='nop'; 21
outfunc='sub'; 20
outfunc='view'; 20
OVERLAY; 72
PARSE; 72
POS; 72
prompt; 38
promptall; 39
promptlgth; 39
promptsource; 38
QUEUE; 72
queue; 59; 60
QUEUEVAR; 72
queuevar; 27
RANDOM; 72
readlim; 22; 50
RETURN; 72
return; 15
REVERSE; 72
RIGHT; 72
rxsparm; 17
SAY; 72
select; 12
SET_HALT; 72
set_halt'; 38
SET_MESSAGE; 72
set_message; 38

SIGN; 72
SPACE; 72
spacerow; 44
sql; 32
sqllengths; 32
sqlnames; 32
sqlnulls; 32
sqltypes; 32
sqlvalues; 32
STRIP; 72
SUBSTR; 72
SUBWORD; 72
SYMBOL; 72
then; 12
TIME; 73
TIMESTAMP; 73
TRANSLATE; 73
TRUNC; 73
unit.1; 20; 21; 22; 50
UNIX; 52; 53
USERID; 73
VALUE; 73
VERIFY; 73
when; 12
WORD; 73
word.x; 21
WORDINDEX; 73
WORDLENGTH; 73
WORDPOS; 73
WORDS; 73
X2B; 73
X2C; 73
X2D; 73
xml; 46
xml_attrib_cnt; 46
xml_attrib.i; 46
xml_cnt; 46
xml_elem_unch; 46
xml.i; 46
zlcdate; 20; 23
zlmdate; 20; 23
zlmsec; 20; 23
zlmtime; 20; 23
zluser; 20; 23
zwinttl; 39

